您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 26.2.1二次函数的图像与性质
26.2二次函数的图象与性质(第1课时)函数y=ax²+bx+c(a,b,c是常数,a≠0)叫做x的二次函数.什么叫二次函数?我们学过用什么方法画函数的图象?主要有哪些步骤?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:用描点法画二次函数y=x2的图象xy=x20123…-1-2-3…0149…149…xy0-4-3-2-11234108642-21描点,连线y=x2?(1)你能描述图象的形状吗?与同伴进行交流.(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.xy0-4-3-2-11234108642-21y=x22xy这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.观察图象,回答问题串(3)图象与x轴有交点吗?如果有,交点坐标是什么?(4)在对称轴左侧,随着x值的增大,y的值如何变化?在对称轴右侧呢?xy0-4-3-2-11234108642-21y=x22xy在对称轴的左侧时,y随着x的增大而减小.在对称轴的右侧时,y随着x的增大而增大.当x=-2时,y=4当x=-1时,y=1当x=1时,y=1当x=2时,y=4抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.观察图象,回答问题串(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?xy0-4-3-2-11234108642-21y=x22xya0,开口都向上;对称轴都是y轴;增减性相同顶点都是原点(0,0)22xy只是开口大小不同在同一坐标系中作二次函数y=x2和y=2x2的图象,会是什么样?探究tx()=x×xux()=2×x×x1.列表:2.描点:3.连线:xy=2x2-201-12y=x2y=x2……顶点坐标.画出函数y=x2、y=2x2、y=x2的图象:y=x2y=2x2y=x2a0,开口都向上;对称轴都是y轴;增减性相同只是开口大小不同顶点都是原点(0,0)探究………410148202821/201/22212121(1)二次函数y=-x2的图象是什么形状?(2)它与二次函数y=x2的图象有什么关系?你能根据表格中的数据作出猜想吗?x…-3-2-10123…y=-x2x…-9-4-10-1-4-9…y=x2x0123…-1-2-3…0149…149…y=x2x0123…-1-2-3…0149…149…xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x22xy这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.yy2xy在对称轴的左侧时,y随着x的增大而增大.在对称轴的右侧时,y随着x的增大而减小.y当x=-2时,y=-4当x=-1时,y=-1当x=1时,y=-1当x=2时,y=-4抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展;当x=0时,函数y的值最大,最大值是0.f1x()=-2×x×xg1x()=-12×x×x1.列表:2.描点:3.连线:xy=-2x2-201-12y=-x2y=-x2……顶点坐标画出函数y=-x2、y=-2x2、y=-x2的图象:y=-x2y=-2x2y=-x212y=x2y=2x2y=-x2a0,开口都向下;对称轴都是y轴;增减性相同.只是开口大小不同-4-10-1-4-8-20-2-8-2-1/20-1/2-2212121抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y=-x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.函数y=ax2(a≠0)的图象和性质:y=x2y=-x2xy0yx01.顶点坐标与对称轴2.位置与开口方向3.增减性与最值开口大小抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2(a0)y=ax2(a0)(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.越小,开口越大.越大,开口越小.aay=ax2演示1.填空:(1)抛物线y=2x2的顶点坐标是_____;对称轴是______;在___________侧,y随着x的增大而增大;在_________侧,y随着x的增大而减小;当x=时,函数y的值最小,最小值是;抛物线y=2x2在x轴的方(除顶点外).(0,0)y轴对称轴的左0对称轴的右0上(2)抛物线在x轴的方(除顶点外),当x_____时,y随着x的增大而增大;当x_____时,y随着x的,增大而减小当x=0时,函数y的值最大,最大值是_____,当x0时,y0.232xy下0002.已知抛物线y=ax2经过点A(-2,-8)(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出此抛物线上纵坐标为-6的点的坐标;(4)若点(m,n)在此抛物线上,那么点(-m,n)是否在此抛物线上?点(m,-n)呢?回味无穷2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.小结拓展1.抛物线y=ax2的顶点是原点,对称轴是y轴.由二次函数y=x2和y=-x2知:2xy2xy
本文标题:26.2.1二次函数的图像与性质
链接地址:https://www.777doc.com/doc-6509467 .html