您好,欢迎访问三七文档
习题1181将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式)(1))2121(1)(2xxxf解因为f(x)1x2为偶函数所以bn0(n12)而611)1(4)1(2/12210221020dxxdxxa21022/1cos)1(2/12dxxnxan2212102)1(2cos)1(4nxdxnxn(n12)由于f(x)在()内连续所以12122cos)1(11211)(nnxnnxfx()(2)1211210101)(xxxxxf解21)(1212100111dxdxxdxdxxfan1212100111coscoscoscos)(xdxnxdxnxdxnxxdxnxfan2sin2])1(1[122nnnn(n12)dxxnxdxnxdxnxxdxnxfbn1212100111sinsinsinsin)(nnn12cos2(n12)而在()上f(x)的间断点为x2k212kk012故}sin2cos21cos]2sin2)1(1{[41)(122xnnnxnnnnxfnn(x2k212kxk012)(3)3010312)(xxxxf解1])12([31)(313003330dxdxxdxxfa]3cos3cos)12([313cos)(31300333dxxndxxnxdxxnxfan])1(1[622nn(n12)]3sin3sin)12([313sin)(31300333dxxndxxnxdxxnxfbnnn)1(6(n12)而在()上f(x)的间断点为x3(2k1)k012故}3sin6)1(3cos])1(1[6{21)(1122nnnxnnxnnxf(x3(2k1)k012)2将下列函数分别展开成正弦级数和余弦级数(1)lxxllxxxf2l20)(解正弦级数对f(x)进行奇延拓则函数的傅氏系数为a00(n012)2sin4]sin)(sin[22221210nnldxlxnxldxlxnxlbln(n12)故122sin2sin14)(nlxnnnlxfx[0l]余弦级数对f(x)进行偶延拓则函数的傅氏系数为2])([2212100ldxxlxdxlallndxlxnxldxlxnxla21210]cos)(cos[2])1(12cos2[222nnnl(n12)bn0(n12)故lxnnnllxfnncos])1(12cos2[124)(122x[0l](2)f(x)x2(0x2)解正弦级数对f(x)进行奇延拓则函数的傅氏系数为a00(n012)]1)1[()(168)1(2sin2231202nnnnndxxnxb故2sin}]1)1[()(168)1{()(131xnnnxfnnn2sin}]1)1[(2)1({81231xnnnnnnx[02)余弦级数对f(x)进行偶延拓则函数的傅氏系数为38222020dxxa2202)(16)1(2cos22ndxxnxann(n12)bn0(n12)故2cos)(16)1(34)(12xnnxfnn2cos)1(1634122xnnnnx[02]
本文标题:118
链接地址:https://www.777doc.com/doc-6513253 .html