您好,欢迎访问三七文档
习题151计算下列极限(1)35lim22xxx解9325235lim222xxx(2)13lim223xxx解01)3(3)3(13lim22223xxx(3)112lim221xxxx解02011lim)1)(1()1(lim112lim121221xxxxxxxxxxx(4)xxxxxx2324lim2230解2123124lim2324lim202230xxxxxxxxxx(5)hxhxh220)(lim解xhxhxhhxxhxhxhhh2)2(lim2lim)(lim02220220(6))112(lim2xxx解21lim1lim2)112(lim22xxxxxxx(7)121lim22xxxx解2111211lim121lim2222xxxxxxxx(8)13lim242xxxxx解013lim242xxxxx(分子次数低于分母次数极限为零)或012111lim13lim4232242xxxxxxxxxx(9)4586lim224xxxxx解32142412lim)4)(1()4)(2(lim4586lim44224xxxxxxxxxxxxx(10))12)(11(lim2xxx解221)12(lim)11(lim)12)(11(lim22xxxxxxx(11))2141211(limnn解2211)21(1lim)2141211(lim1nnnn(12)2)1(321limnnn解211lim212)1(lim)1(321lim22nnnnnnnnnn(13)35)3)(2)(1(limnnnnn解515)3)(2)(1(lim3nnnnn(分子与分母的次数相同极限为最高次项系数之比)或51)31)(21)(11(lim515)3)(2)(1(lim3nnnnnnnnn(14))1311(lim31xxx解)1)(1()2)(1(lim)1)(1(31lim)1311(lim2122131xxxxxxxxxxxxxxx112lim21xxxx2计算下列极限(1)2232)2(2limxxxx解因为01602)2(lim2322xxxx所以2232)2(2limxxxx(2)12lim2xxx解12lim2xxx(因为分子次数高于分母次数)(3))12(lim3xxx解)12(lim3xxx(因为分子次数高于分母次数)3计算下列极限(1)xxx1sinlim20解01sinlim20xxx(当x0时x2是无穷小而x1sin是有界变量)(2)xxxarctanlim解0arctan1limarctanlimxxxxxx(当x时x1是无穷小而arctanx是有界变量)4证明本节定理3中的(2)
本文标题:15
链接地址:https://www.777doc.com/doc-6513317 .html