您好,欢迎访问三七文档
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号(43)申请公布日(21)申请号201810368904.8(22)申请日2018.04.23(71)申请人南京大学地址210093江苏省南京市鼓楼区汉口路22号(72)发明人李睿华 葛志斌 王卫 罗黎煜 关梦莎 张永威 李甫昌 代自玉 (74)专利代理机构南京知识律师事务所32207代理人蒋海军(51)Int.Cl.C02F3/34(2006.01)C02F3/28(2006.01)C02F101/16(2006.01)C02F101/10(2006.01)(54)发明名称一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺(57)摘要本发明公开了一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺,属于污水处理技术领域。它包括以硫铁矿、硫磺、碳酸盐矿物为填料,利用硫自养反硝化,分别构建硫铁矿处理模块和硫磺处理模块,以多种方式组合,处理污水中的氮和磷。本发明能灵活组合模块对不同水质污水进行处理,具有成本低廉,调试灵活,适用性广的优点,适合于工程应用。权利要求书1页说明书7页附图2页CN108439613A2018.08.24CN108439613A1.一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,以硫铁矿、硫磺、碳酸盐矿物为填料,采用硫自养反硝化工艺,分别构建硫铁矿处理模块和硫磺处理模块,通过将所述的硫铁矿处理模块与硫磺处理模块以多种方式组合,处理污水中的氮和磷。2.根据权利要求1所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述组合方式中至少含有一个硫铁矿处理模块和一个硫磺处理模块。3.根据权利要求2所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述的硫铁矿处理模块与硫磺处理模块的组合方式为串联和/或并联方式。4.根据权利要求3所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,多个处理模块以串联方式组合时,可以分别填装在多个反应器中或分层填装在一个反应器中。5.根据权利要求4所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述硫铁矿、硫磺、碳酸盐矿物的粒径为0.1~50mm。6.根据权利要求5所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述硫铁矿处理模块为硫铁矿或硫铁矿与碳酸盐矿物的混合物,所述硫磺处理模块为硫磺或硫磺与碳酸盐矿物的混合物。7.根据权利要求6所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述硫铁矿处理模块为硫铁矿与碳酸盐矿物的混合物时,硫铁矿与碳酸盐矿物的体积比为(1~20):1。8.根据权利要求7所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,所述硫磺处理模块为硫磺与碳酸盐矿物的混合物时,硫磺与碳酸盐矿物的体积比为(1~6):1。9.根据权利要求8所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,进水氮浓度大于等于40mg/L且磷浓度大于等于10mg/L时,采用硫铁矿处理模块与硫磺处理模块并联模式,所述硫铁矿处理模块为硫铁矿,所述硫磺处理模块为体积比为4:1的硫磺和石灰石的混合物,之后再串联一级由硫磺构成的硫磺处理模块。10.根据权利要求1~8中任意一项所述的基于硫自养反硝化的模块化污水脱氮除磷处理工艺,其特征在于,在进水磷浓度大于等于4mg/L且进水氮浓度大于进水磷浓度5倍时,采用将第一硫铁矿处理模块与第一硫磺处理模块并联模式,所述的第一硫铁矿处理模块为硫铁矿,所述的第一硫磺处理模块为体积比为3:1的硫磺与石灰石的混合物;再串联一个由硫铁矿构成的第二硫铁矿处理模块,之后再串联一个由硫磺构成的硫磺处理模块。权 利 要 求 书1/1页2CN108439613A2一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺技术领域[0001]本发明属于污水处理技术领域,涉及基于硫自养反硝化的模块化污水脱氮除磷处理工艺,更具体地说,涉及一种硫铁矿处理模块和硫磺处理模块通过多种方式组合的工艺,处理污水中氮和磷的方法。背景技术[0002]随着我国经济的快速发展,城市化进程的加快,导致水体污染越来越严重。为了控制水污染,国家投入巨资进行污水处理设施建设。[0003]目前污水处理方法大致可分为物理法、生物法和化学法三种,其中生物方法的相对成本最低,应用最为广泛。随着对处理方法研究的不断深入,一些分布广泛但尚未得到合理利用的矿物质也应用到了污水生物处理方法中。如近几年越来越多的研究结果证实了硫铁矿、硫磺、碳酸盐矿物等在污水生物处理方面的作用。[0004]氮和磷是导致水体富营养化的主要元素,是污水处理的重点之一。相比于异养反硝化等技术,硫自养反硝化是一种低耗和高效的水中营养物去除技术,近年来受到广泛关注。以硫磺为硫源的自养反硝化工艺具备稳定而快速的脱氮能力,但是其除磷能力有限;以硫铁矿为硫源的自养反硝化工艺具备稳定而快速的除磷能力,但是其脱氮速率较慢。这两种硫自养反硝化工艺各自的不足限制了它们的工程应用。如专利CN201310695460,利用磁黄铁矿生物滤池,可以同步去除氮磷,但是其水力停留时间在12h以上,影响了其工程应用的价值。同时,不同污水中氮磷比差异很大,单独的硫磺工艺或硫铁矿工艺很难按合适比例同时去除氮和磷,造成工艺脱氮或除磷能力的浪费,且在建造完成后很难适应进水水质的变化。因此,本发明提出基于硫磺工艺和硫铁矿工艺的模块化组合工艺,耦合了硫磺工艺的快速脱氮能力以及硫铁矿工艺的快速除磷能力,实现快速脱氮除磷。并且,根据污水中不同的氮磷浓度比,本发明可以灵活地调整模块间的组合方式,调整脱氮和除磷的水力停留时间,达到污水最优脱氮除磷效果。[0005]中国专利申请号201010524339.3,授权公告号CN 101973629B,公开了一种黄铁矿作为生化填料脱氮除磷的方法,指出脱氮硫杆菌可以黄铁矿为硫源,方解石、石灰石或白云石为碳源对污水进行处理,黄铁矿释放的亚铁或铁离子均可与磷酸根形成沉淀进而实现脱氮除磷一体化过程。然而由于黄铁矿在水中的溶解度较低,负二价硫的溶出速度较慢,该方案的脱氮效果仍有待提高。中国专利申请号201710636570.3,公布号CN 107176702A,公开了一种强化硫自养反硝化过程同步脱氮除磷的污水处理方法,采用黄铁矿、硫磺、菱铁矿强化废水反硝化过程,提高同步脱氮除磷效果。该方法为同步脱除特定组分进水水质污水中的氮磷提供了重要思路,但并没有给出在进水水质或出水要求发生变化时的脱氮除磷的解决方案,因此在工程应用上存在一定的局限性。由于实际污水中氮磷浓度差异大以及经常变化的特征,上述两个专利都无法按合适比例去除氮磷,而导致工艺脱氮或除磷能力的大量浪费。如多数污水厂二级出水的氮磷比例在10以上,按上述两个专利的处理方案,为达到氮的有效去除,所设定的水力停留时间(HRT)将远超过有效去除磷所需的HRT,导致反应器说 明 书1/7页3CN108439613A3体积大,投资成本高,难于工程化。而本发明的模块化方案,改变了硫磺工艺和硫铁矿工艺的耦合方式,解决了氮或磷去除能力浪费的问题,并创造性地给出了适用于各种氮磷水质污水的基于硫自养反硝化的可调方案。发明内容[0006]1、要解决的问题[0007]针对现有技术中以硫磺为硫源的自养反硝化除磷效果有局限、以硫铁矿为硫源的自养反硝化脱氮速率慢以及传统方案不能够灵活应对进水水质或出水要求发生变化时的脱氮除硫的技术瓶颈,本发明提供了一种以硫铁矿、硫磺、碳酸盐矿物为填料,采用硫自养反硝化工艺,分别构建硫铁矿处理模块和硫磺处理模块,使模块以多种方式组合,快速脱氮且快速除磷的污水处理方法。[0008]2、技术方案[0009]为解决上述问题,本发明采用如下的技术方案。[0010]一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺,包括:以硫铁矿、硫磺、碳酸盐矿物为填料,采用硫自养反硝化工艺,分别构建硫铁矿处理模块和硫磺处理模块,通过将所述的硫铁矿处理模块与硫磺处理模块以多种方式组合,处理污水中的氮和磷,可根据进水水质和出水要求进行选择模块组合方式,达到最优脱氮除磷效果。该方案耦合了硫磺工艺的快速脱氮能力以及硫铁矿工艺的快速除磷能力,在同一系统中实现了快速脱氮除磷。[0011]优选地,所述组合方式中至少含有一个硫铁矿处理模块和一个硫磺处理模块,通过硫磺处理模块对污水进行脱氮,通过硫铁矿处理模块对污水进行除磷。[0012]优选地,所述的硫铁矿处理模块与硫磺处理模块的组合方式为串联和/或并联方式,可根据进水水质和出水要求进行选择,当进水氮磷较高或出水要求的氮磷标准较高时,建议采用硫铁矿处理模块与硫磺处理模块串联的组合方式,这样处理的优势是可以达到较高的去除水平,保证出水的达标排放;当进水氮磷较低或出水要求的氮磷标准相对较低时,可采用硫铁矿处理模块与硫磺处理模块并联的组合方式,这样处理的优势是模块的调节更简单。[0013]优选地,多个处理模块以串联方式组合时,可以分别填装在多个反应器中或分层填装在一个反应器中。将每一个处理模块单独填装在一个反应器中时,优点在于可以综合依据进水水质和出水要求进行水力停留时间的调节,并能应对比较大的水质波动,以达到最佳的运行状况;将多个处理模块分层填装在一个反应器中时,优点在于当处理水质变化相对较小的进水时,稳定处理的同时降低了反应器的个数与成本。[0014]优选地,所述硫铁矿、硫磺、碳酸盐矿物的粒径为0.1~50mm。[0015]优选地,所述硫铁矿处理模块为硫铁矿或硫铁矿与碳酸盐矿物的混合物,所述硫磺处理模块为硫磺或硫磺与碳酸盐矿物的混合物。其中,碳酸盐矿物主要用来中和硫自养反硝化过程中产生的酸,也可以为细菌提供无机碳源;硫磺作为硫源在硫自养反硝化菌作用下对污水进行快速脱氮;硫铁矿一方面可以作为硫源在硫自养反硝化菌作用下脱氮,另一方面其释放的亚铁或铁离子可以与磷酸根形成沉淀进而实现除磷;单独使用硫铁矿作为硫铁矿处理模块即可以实现脱氮除磷,使用硫铁矿与碳酸盐矿物的混合物作为硫铁矿处理说 明 书2/7页4CN108439613A4模块可以增强菌生长的稳定性并降低出水色度;单独使用硫磺作为硫磺处理模块即可以实现脱氮,使用硫磺与碳酸盐矿物的混合物作为硫磺处理模块可以增强菌生长的稳定性,提高脱氮能力。[0016]优选地,所述硫铁矿处理模块为硫铁矿与碳酸盐矿物的混合物时,硫铁矿与碳酸盐矿物的体积比为(1~20):1。[0017]优选地,所述硫磺处理模块为硫磺与碳酸盐矿物的混合物时,硫磺与碳酸盐矿物的体积比为(1~6):1。[0018]优选地,所述硫铁矿为钙、镁、铁的碳酸盐矿物,如石灰石、白云石、方解石、菱铁矿、菱镁矿等,其中,菱铁矿除了用来中和硫自养反硝化过程中产生的酸以及为细菌提供无机碳源之外,其释放的亚铁离子还可以与磷酸根形成沉淀从而加快除磷速度。[0019]优选地,所述硫铁矿处理模块与硫磺处理模块以多种方式组合进行污水处理时,总水力停留时间为1.1~5.7h。[0020]优选地,所述基于硫自养反硝化的模块化污水脱氮除磷处理工艺的实施步骤为:[0021]步骤(1)、装填填料:取硫铁矿、硫磺、碳酸盐矿物构建硫铁矿处理模块和硫磺处理模块,装填于反应器中;[0022]步骤(2)、接种污泥:向步骤(1)中的所有反应器接种活性污泥,加入营养液培养若干天,微生物挂膜完成后,开始运行;[0023]步骤(3)、运行与调试:水流根据组合方式流过各个模块后出水,即完成污水处理;依据进水氮磷浓度和出水指标要求,调节水在不同模块中的水力停留时间,实现氮磷的有效去除,达标排放。[0024]优选地,在进水氮浓度大于40mg/L且磷浓度大于10mg/L时,首先采用硫铁矿处理模块与硫磺处理模块并联模式,所述硫铁矿处理模块为硫铁矿,所述硫磺处理模块为体积比为4:1的硫磺与石灰石的混合物;之后再串联一级由硫磺构成的硫磺处理模块。其目的在于针对进水氮浓度进水情况,首先采用硫铁矿处理模块与硫磺处理模块对进水中高浓度氮磷进行初步处理,再针对性地采用串联的硫磺处理模块去除水中的氮,
本文标题:CN2018103689048一种基于硫自养反硝化的模块化污水脱氮除磷处理工艺公开号10843
链接地址:https://www.777doc.com/doc-6535369 .html