您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 研究生课件 > 1999考研数二真题及解析
1999年全国硕士研究生入学统一考试数二试题一、填空题(本题共5小题,每小题3分,满分15分。把答案填在题中横线上。)(1)曲线sin2costtxetyet,在点0,1处的法线方程为(2)设函数yyx由方程23lnsinxyxyx确定,则0xdydx(3)25613xdxxx(4)函数22xyx在区间13,22上的平均值为(5)微分方程24xyye的通解为二、选择题(本题共5小题,每小题3分,满分15分。每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。)(1)设21cos,0(),0xxxfxxgxx,其中gx是有界函数,则()fx在0x处()(A)极限不存在.(B)极限存在,但不连续.(C)连续,但不可导.(D)可导.(2)设15sin00sin,1xxttxdtxtdtt,则当0x时x是x的()(A)高阶无穷小(B)低阶无穷小(C)同阶但不等价的无穷小(D)等价无穷小(3)设()fx是连续函数,Fx是()fx的原函数,则()(A)当()fx是奇函数时,Fx必是偶函数.(B)当()fx是偶函数时,Fx必是奇函数.(C)当()fx是周期函数时,Fx必是周期函数.(D)当()fx是单调增函数时,Fx必是单调增函数.(4)“对任意给定的0,1,总存在正整数N,当nN时,恒有2nxa”是数列nx收敛于a的()(A)充分条件但非必要条件.(B)必要条件但非充分条件.(C)充分必要条件.(D)既非充分条件又非必要条件.(5)记行列式212322212223333245354435743xxxxxxxxxxxxxxxx为fx,则方程0fx的根的个数为()(A)1.(B)2.(C)3.(D)4.三、(本题满分5分)求201tan1sinlimln1xxxxxx.四、(本题满分6分)计算21arctanxdxx.五、(本题满分7分)求初值问题2210(0)0xyxydxxdyxy的解.六、(本题满分7分)为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口见图,已知井深30m30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3/ms,在提升过程中,污泥以20/Ns的速度从抓斗缝隙中漏掉,现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功?(说明:①111;NmJ其中,,,mNsJ分别表示米,牛顿,秒,焦耳;②抓斗的高度及位于井口上方的缆绳长度忽略不计.)七、(本题满分8分)已知函数321xyx,求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点(3)函数图形的渐近线.八、(本题满分8分)设函数fx在闭区间1,1上具有三阶连续导数,且10f,11f,00f,证明:在开区间1,1内至少存在一点,使3f.九、(本题满分9分)设函数0yxx二阶可导,且0yx,01y.过曲线yyx上任意一点,Pxy作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为1S,区间0,x上以yyx为曲边的曲边梯形面积记为2S,并设122SS恒为1,求此曲线yyx的方程.十、(本题满分6分)设fx是区间0,上单调减少且非负的连续函数,11nnniafkfxdx1,2,n,证明数列na的极限存在.十一、(本题满分8分)设矩阵111111111A,矩阵X满足*12AXAX,其中*A是A的伴随矩阵,求矩阵X.十二、(本题满分5分)设向量组11,1,1,3T,21,3,5,1T,33,2,1,2Tp,42,6,10,Tp(1)p为何值时,该向量组线性无关?并在此时将向量4,1,6,10T用124,,,线性表出;(2)p为何值时,该向量组线性相关?并此时求出它的秩和一个极大线性无关组.1999年全国硕士研究生入学统一考试数二试题解析一、填空题(1)【答案】210yx【详解】点0,1对应0t,则曲线在点0,1的切线斜率为cossincossinsin22cos2sin22cos2ttttdydyetetttdtdxdxetetttdt,把0t代入得12dydx,所以改点处法线斜率为2,故所求法线方程为210yx.(2)【答案】1【详解】()yx是有方程23lnsinxyxyx所确定,所以当0x时,1y.对方程23lnsinxyxyx两边非别对x求导,得23223cosxyxyxyxxy,把0x和1y代入得0(0)1xdyydx(3)【答案】213ln(613)4arctan22xxxC【详解】通过变换,将积分转化为常见积分,即222538613613613xxdxdxdxxxxxxx2221(613)82613(34dxxdxxxx)223(1ln(613)432(1xdxxx)2)2213ln(613)4arctan22xxxC(4)【答案】3112【详解】按照平均值的定义有322122131122xydxx,作变换令sinxt,则cosdxtdt,所以23261sincos311sin22ttydtt2362sin31tdt3366111131(31)(cos2)(31)sin2222212tdttt(5)【答案】22121,4xxyCeCxe其中12,CC为任意常数.【分析】先求出对应齐次方程的通解,再求出原方程的一个特解.【详解】原方程对应齐次方程40yy的特征方程为:240,解得122,2,故40yy的通解为22112,xxyCeCe由于非齐次项为2(),xfxe因此原方程的特解可设为*2,xyAxe代入原方程可求得14A,故所求通解为*2211214xxyyyCeCxe二、选择题(1)【答案】(D)【详解】由于可导必连续,连续则极限必存在,可以从函数可导性入手.因为20001()(0)1cos2(0)limlimlim0,0xxxxfxfxfxxxxx2000()(0)()(0)limlimlim()0,0xxxfxfxgxfxgxxx从而,(0)f存在,且(0)0f,故正确选项为(D).(2)【答案】(C)【详解】当0x有,5011000sinsin0sinsin55()5limlimlim()(1)(1sin)cosxxxxxtxtxdtxtxxtdtxx10sinsin00sin51155lim5151lim(1sin)limcosxxxxxxeexx所以当0x时x是x同阶但不等价的无穷小.(3)【答案】(A)【详解】应用函数定义判定函数的奇偶性、周期性和单调性.()fx的原函数()Fx可以表示为0()(),xFxftdtC于是00()()().utxxFxftdtCfuduC当()fx为奇函数时,()()fufu,从而有00()()()()xxFxfuduCftdtCFx即F(x)为偶函数.故(A)为正确选项.(B)、(C)、(D)可分别举反例如下:2()fxx是偶函数,但其原函数31()13Fxx不是奇函数,可排除(B);2()cosfxx是周期函数,但其原函数11()sin224Fxxx不是周期函数,可排除(C);()fxx在区间(,)内是单调增函数,但其原函数21()2Fxx在区间(,)内非单调增函数,可排除(D).(4)【答案】(C)【详解】【方法1】“必要性”:数列极限的定义“对于任意给定的10,存在10N,使得当1nN时恒有1||nxa”.由该定义可以直接推出题中所述,即必要性;“充分性”:对于任意给定的10,取11min,33,这时(0,1),由已知,对于此存在0N,使得当nN时,恒有||2nxa,现取11NN,于是有当1nNN时,恒有112||3nxa.这证明了数列nx收敛于a.故(C)是正确的.【方法2】数列极限的精确定义是:对于任意给定的0,总存在0N,使得当nN时||nxa,则称数列nx收敛于a.这里要抓住的关键是要能够任意小,才能使||nxa任意小.将本题的说法改成:对任意12(0,2)0,总存在10N,使得当1nNN时,有1||2nxa,则称数列nx收敛于a.由于1(0,2)可以任意小,所以||nxa能够任意小.故两个说法是等价的.(5)【答案】(B)【详解】利用行列式性质,计算出行列式是几次多项式,即可作出判别.212322212223()333245354435743xxxxxxxxfxxxxxxxxx210121221013133122414373xxxxxx列列列列列列21002210042331214376xxxxxx列列212122176xxxx(若,,ABC均为n阶方阵,则ABACOC)[(2)1(22)1][6(2)(1)(7)]xxxx()(55)xx5(1)xx故()(55)0fxxx有两个根120,1xx,故应选(B).三【详解】进行等价变化,然后应用洛必达法则,【方法1】201tan1sinlimln1xxxxxx20(1tan1sin)(1tan1sin)lim(ln1)(1tan1sin)xxxxxxxxxx0tansinlim(ln1)2xxxxxx01cos1sincoslim2ln1xxxxxxx011coslim2ln1xxxx01(1)sinlim2xxxx洛12【方法2】201tan1sinlimln1xxxxxx0tansinlim(ln1)2xxxxxx00tan(1cos)(1cos)limlim2(ln1)2(ln1)xxxxxxxxxxxx011coslim2ln1xxxx2012lim2ln1xxxx00111limlim2(1)21xxxxxx洛=12四【详解】采用分部积分法21arctanxdxx11arctan()xdx211111arctan1xdxxxx221111()lnln(1)4142xdxxxxx12ln|41xx1ln242五【详解】将原方程化简2221()yxydyyydxxxx令yux,则dyduuxdxdx,代入上式,得21duuxuudx,化简并移项,得21dudxxu,由积分公式得2ln(1)ln()uuCx,其中C是常数,因为0,x所以0C,去掉根号
本文标题:1999考研数二真题及解析
链接地址:https://www.777doc.com/doc-6551390 .html