您好,欢迎访问三七文档
第三章厌氧生物处理3.1基本概念3.1.1厌氧生物处理的基本原理一、厌氧生物处理的基本生物过程及其特征——又称厌氧消化、厌氧发酵;——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。1、厌氧生物处理工艺的发展简史:①上述的厌氧过程广泛地存在于自然界中;②人类第一次利用厌氧消化处理废弃物,是始于1881年——LouisMouras的“自动净化器”;③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等);——长的HRT、低的处理效率、浓臭的气味等;④50、60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开始大规模地应用于废水处理;——HRT大大缩短,有机负荷大大提高,处理效率也大大提高;——厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;——HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。⑤最近(90年代以后),随着UASB反应器的广泛应用,在其基础上又发展起来了EGSB和IC反应器;——EGSB反应器可以在较低温度下处理低浓度的有机废水;——IC反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。2、厌氧消化过程的基本生物过程①两阶段理论:——30~60年代,被普遍接受的是“两阶段理论”第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;——水解和酸化,产物主要是脂肪酸、醇类、CO2和H2等;——主要参与微生物统称为发酵细菌或产酸细菌;——其特点有:1)生长快,2)适应性(温度、pH等)强。第二阶段:产甲烷阶段,又称碱性发酵阶段;——产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;图1厌氧反应的两阶段理论图示内源呼吸产物水解胞外酶胞内酶产甲烷菌胞内酶产酸菌不溶性有机物可溶性有机物细菌细胞脂肪酸、醇类、H2、CO2其它产物细菌细胞CO2、CH4——主要参与微生物统称为产甲烷菌;——其特点有:1)生长慢;2)对环境条件(温度、pH、抑制物等)非常敏感。②三阶段理论:——深入研究后,发现上述过程不能真实反映厌氧反应过程的本质;——微生物学的研究表明,产甲烷菌只能利用一些简单有机物如甲酸、乙酸、甲醇、甲基胺类以及H2/CO2等,而不能利用含两个碳以上的脂肪酸和甲醇以外的醇类;——70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2,另一种细菌利用H2和CO2产生CH4;——因而,提出了“三阶段理论”水解、发酵阶段:产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。③四阶段理论(四菌群学说):同型产乙酸菌:将H2/CO2合成为乙酸。但实际上这一部分乙酸的量较少,只占全部乙酸的5%。——三阶段、四阶段理论是目前认为的对一样生物处理过程较全面和较准确的描述。3、厌氧生物处理的主要特征能耗大大降低,而且还可以回收生物能(沼气);污泥产量很低;——厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;对温度、pH等环境因素较敏感;但一般来说,①处理出水水质较差,需进一步利用好氧法进行处理;②气味较大;③对氨氮的去除效果不好;等等4、厌氧生物处理技术是我国水污染控制的重要手段——我国高浓度有机工业废水排放量巨大,这些废水浓度高、多含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物;——我国当前的水体污染物还主要是有机污染物以及营养元素N、P的污染;——目前的形势是:能源昂贵、土地价格剧增、剩余污泥的处理费用也越来越高;——厌氧工艺的突出优点是:①能将有机污染物转变成沼气并加以利用;②运行能耗低;③有机负荷高,说明:1)I、II、III为三阶段理论,I、II、III、IV为四类群理论;2)所产生的细胞物质未表示在图中III发酵性细菌脂肪酸、醇类产氢产乙酸菌II同型产乙酸菌IV有机物乙酸H2+CO2CH4I产甲烷菌图2厌氧反应的三阶段理论和四类群理论占地面积少;④污泥产量少,剩余污泥处理费用低;等等——厌氧工艺的综合效益表现在环境、能源、生态三个方面。二、厌氧消化过程中的主要微生物——发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。1、发酵细菌(产酸细菌):主要功能:水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;主要细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。2、产氢产乙酸菌主要功能:将各种高级脂肪酸和醇类氧化分解为乙酸和H2;主要反应:乙醇:232232HCOOHCHOHOHCHCH丙酸:22322332COHCOOHCHOHCOOHCHCH丁酸:232223222HCOOHCHOHCOOHCHCHCH注意:上述反应只有在乙酸浓度很低,系统中氢分压很低时才能顺利进行。主要细菌:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。3、产甲烷菌——60年代Hungate开创了严格厌氧微生物培养技术;主要功能:将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;一般可分为两大类:乙酸营养型和H2营养型产甲烷菌;一般来说,乙酸营养型产甲烷菌的种类较少,只有Methanosarcina和Methanothrix,但在厌氧反应器中,有70%左右的甲烷是来自乙酸的氧化分解;典型的产甲烷反应:①243COCHCOOHCH②OHCHCOH242224③324224HCCOCHHHCOO④242324COCHOHCO⑤OHHHCOCHOHCH234334⑥434243343399)(4NHHHCOCHOHNHCH⑦SHHHCOCHOHSCH234233233)(2⑧OHCHHOHCH24234根据产甲烷菌的形态和生理生态特征,可将其分类如下:——最新的分类(Bergy’s细菌手册第九版),共分为:三目、七科、十九属、65种;产甲烷菌有各种不同的形态,常见的有:①产甲烷杆菌:呈短杆、长杆、竹节状或丝状②产甲烷球菌:为正圆形或椭圆形,排成对或链状③产甲烷八叠球菌:球形细胞形成规则的或不规则的堆积状④产甲烷螺菌:呈规则的弯曲杆状,最后发展为不能运动的螺旋丝状在生物分类学上,产甲烷菌(Methanogens)属于古细菌(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊。在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等。产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达46天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤三、厌氧消化动力学在厌氧消化条件下,BOD5去除也遵循一级反应动力学规律,故好氧生物降解的动力学方程也适用于厌氧反应,由于甲烷发酵阶段是厌氧消化速率的控制因素,因此,厌氧消化反应动力学是以该阶段为基础建立的。厌氧消化反应动力学方程式:式中:dS/dt——底物去除率,质量/(体积•时间);k——单位质量底物的最大利用速率,质量/细菌质量;S——可降解的底物量,质量/体积;Ks——半速度常数,质量/底物体积;X——细菌浓度,质量/体积;dX/dt——细菌增殖速率,质量/(体积•时间);Y——细菌产率,细菌质量/底物质量;b——细菌衰亡速率系数,d-1;式(3-1)代入式(3-2),并除以X得:产甲烷杆菌目产甲烷杆菌科产甲烷球菌目产甲烷球菌科产甲烷微菌目产甲烷微菌科产甲烷八叠球菌科产甲烷杆菌属产甲烷杆短菌属甲酸产甲烷杆菌瘤胃产甲烷杆菌产甲烷球菌属范氏产甲烷球菌产甲烷微菌属产甲烷菌属产甲烷螺菌属产甲烷八叠球菌属产甲烷丝菌属运动产甲烷微菌黑海产甲烷微菌亨氏产甲烷螺菌巴氏产甲烷八叠球菌索氏产甲烷丝菌属)23()13(bXdtdSYdtdXSKkSXdtdSsSa——原污泥可生物降解底物浓度;Se——剩余的可生物降解底物浓度;θc——污泥龄;四、厌氧生物处理的影响因素——产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;——主要因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。1、温度:温度对厌氧微生物的影响尤为显著:厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55C左右)和中温消化(35C左右);高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25C)进行,以节省能量和运行费用。2、pH值和碱度:pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在6.5或8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积),将消耗3HCO,使pH下降;但产甲烷菌的作用不但可以消耗脂肪酸,而且还会产生3HCO,使系统的pH值回升。碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。3、氧化还原电位:严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~-100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~-400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;4、营养要求:厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P=200:5:1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:酵母浸出膏、生物素、维生素等。5、F/M比:厌氧生物处理的有机物负荷
本文标题:第三章厌氧生物处理
链接地址:https://www.777doc.com/doc-6555231 .html