您好,欢迎访问三七文档
关于生物脱氮的规定。生物脱氮由硝化和反硝化两个生物化学过程组成。氨氮在好氧池中通过硝化细菌作用被氧化成硝态氮,硝态氮在缺氧池中通过反硝化菌作用被还原成氮气逸出。硝化菌是化能自养菌,需在好氧环境中氧化氨氮获得生长所需能量;反硝化菌是兼性异养菌,它们利用有机物作为电子供体,硝态氮作为电子最终受体,将硝态氮还原成气态氮。由此可见,为了发生反硝化作用,必须具备下列条件:①有硝态氮;②有有机碳;③基本无溶解氧(溶解氧会消耗有机物)。为了有硝态氮,处理系统应采用较长泥龄和较低负荷。缺氧/好氧法可满足上述要求,适于脱氮。1缺氧/好氧生物反应池的容积计算,可采用本规范第6.6.11条生物去除碳源污染物的计算方法。根据经验,缺氧区(池)的水力停留时间宜为0.5~3H。2式(6.6.18-1)介绍了缺氧池容积的计算方法,式中0.12为微生物中氮的分数。反硝化速率KDE与混合液回流比、进水水质、温度和污泥中反硝化菌的比例等因素有关。混合液回流量大,带入缺氧池的溶解氧多,KDE取低值;进水有机物浓度高且较易生物降解时,KDE取高值。温度变化可用式(6.6.18-2)修正,式中1.08为温度修正系数。由于原污水总悬浮固体中的一部分沉积到污泥中,结果产生的污泥将大于由有机物降解产生的污泥,在许多不设初次沉淀池的处理工艺中更甚。因此,在确定污泥总产率系数时,必须考虑原污水中总悬浮固体的含量,否则,计算所得的剩余污泥量往往偏小。污泥总产率系数随温度、泥龄和内源衰减系数变化而变化,不是一个常数。对于某种生活污水,有初次沉淀池和无初次沉淀池时,泥龄-污泥总产率曲线分别示于图1和图2。TSS/BOD5反映了原污水中总悬浮固体与五日生化需氧量之比,比值大,剩余污泥量大,即YT值大。泥龄ΘC影响污泥的衰减,泥龄长,污泥衰减多,即YT值小。温度影响污泥总产率系数,温度高,YT所值小。式(6.6.18-4)介绍了好氧区(池)容积的计算公式。式(6.6.18-6)为计算硝化细菌比生长速率的公式,0.47为15℃时硝化细菌最大比生长速率;硝化作用中氮的半速率常数KN是硝化细菌比生长速率等于硝化细菌最大比生长速率一半时氮的浓度,KN的典型值为1.0MG/L;E0.098(T-15)是温度校正项。假定好氧区(池)混合液进入二次沉淀池后不发生硝化反应,则好氧区(池)氨氮浓度与二次沉淀池出水氨氮浓度相等,式(6.6.18-6)中好氧区(池)氨氮浓度NA可根据排放要求确定。自养硝化细菌比异养菌的比生长速率小得多,如果没有足够长的泥龄,硝化细菌就会从系统中流失。为了保证硝化发生.泥龄须大于1/Μ。在需要硝化的场合,以泥龄作为基本设计参数是十分有利的。式(6.6.18-6)是从纯种培养试验中得出的硝化细菌比生长速率。为了在环境条件变得不利于硝化细菌生长时,系统中仍有硝化细菌,在式(6.6.18-5)中引入安全系数F,城镇污水可生化性好,F可取1.5~3.0。式(6.6.18-7)介绍了混合液回流量的计算公式。如果好氧区(池)硝化作用完全,回流污泥中硝态氮浓度和好氧区(池)相同,回流污泥中硝态氮进厌氧区(池)后全部被反硝化,缺氧区(池)有足够碳源,则系统最大脱氮率是总回流比(混合液回流量加上回流污泥量与进水流量之比)R的函数,R=(QRI+QR)/Q,最大脱氮率=R/(1+R)。由公式可知,增大总回流比可提高脱氮效果,但是,总回流比为4时,再增加回流比,对脱氮效果的提高不大。总回流比过大,会使系统由推流式趋于完全混合式,导致污泥性状变差;在进水浓度较低时,会使缺氧区(池)氧化还原电位(ORP)升高,导致反硝化速率降低。上海市政工程设计研究院观察到总回流比从1.5上升到2.5,ORP从-218MV上升到-192MV,反硝化速率从O.08KGN03/(KGVSS·D)下降到0.038KGN03/(KGVSS·D)。回流污泥量的确定,除计算外,还应综合考虑提供硝酸盐和反硝化速率等方面的因素。3在设计中虽然可以从参考文献中获得一些动力学数据,但由于污水的情况干差万别,因此只有试验数据才最符合实际情况,有条件时应通过试验获取数据。若无试验条件时,可通过相似水质、相似工艺的污水厂,获取数据。生物脱氮时,由于硝化细菌世代时间较长,要取得较好脱氮效果,需较长泥龄。以脱氮为主要目标时,泥龄可取11~23D。相应的五日生化需氧量污泥负荷较低、污泥产率较低、需氧量较大,水力停留时间也较长。表6.6.18所列设计参数为经验数据。
本文标题:关于生物脱氮的规定
链接地址:https://www.777doc.com/doc-6566396 .html