您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 河流环境持久性有机污染物归宿的动态逸度模型
1,1,1,2(1,116012;2,116023):(POPs),.,,HCH.:,.(273~298K),HCH84%897%897%,06922045;7916.,56,POPs.:;;HCH;;:X131:A:02503301(2006)01012105:20040910;:20050315:(INCODCContractNO.ERBIC18CT970166):(1971~),,,.DynamicFugacityModelforDescribingtheFateofPersistentOrganicPollutantsintheRiverLIUZhenyu1,YANGFenglin1,QUANXie1,ZHANGXiaohong2(1DepartmentofEnvironmentalScienceandTechnology,SchoolofEnvironmentalandBiologicalScience&Technology,DalianUniversityofTechnology,Dalian116012,China;2EnvironmentalProtectionCompanyofDalian,Dalian116023,China)Abstract:DynamicmodeldependingontemperaturewithfugacityapproachisformulatedwhichdescribesthefateofPersistentOrganicPollutants(POPs)inariverThefugacitycapacity,thedegradationrateandtransfercoefficientsofpollutantsaredependingontemperatureinthemodel.ThemodelisillustratedbycalculatingthefateofHCHinLiaoRiver.Theresultsshowthatfrom273Kto298K,thefugacitycapacitiesinair,waterandsedimentofHCHarerespectivelyreducedin84%,897%and897%.However,inthesamerangeoftemperature,thedegradationratecoefficientsinair,waterandsediment,andvolatilizationanddiffusionratecoefficientsofHCHareincreasedin069,220,45,79and16times,respectively.Thecalculatedvalueagreewellwiththefieldobservedvalueintheorderofmagnitude,whichshowsthatthemodelisappropriateforsimulatingthefateofPOPsinalongtime.Keywords:fugacitymodel;dynamicmodel;HCH;persistentorganicpollutants;temperatureMackay[1],,,.,[2].Mackay[3],,,HCH.1Mackay,n.3,,[3]:(VWZW+VPZP)dfW/dt=EW+fIW(DI+DX)+fA(DV+DM)+fS(DR+DT)-fW(DV+DW+DI+DX+DD+DT)(1)VSZSdfS/dt=fW(DD+DT)-fS(DR+DT+DS)(2),V(m3),Z[mol!(m3!Pa)-1],f(Pa),IWWSPA.EW(mol!h-1),t(h).D/[mol!(h!Pa)-1],DIDX,DWDSDA27120061ENVIRONMENTALSCIENCEVol.27,No.1Jan.,2006,DMDVDT,DDDR.,(1~2)[3]:dfW/dt={EW+(fIW-fW)(DI+DX)+WL[fA(BV+BM)+fS(BR+BT)-fW(BV+BW+BD+BT)]}/[WL(hWZW+hPZP)](3)dfS/dt=[fW(BD+BT)-fS(BR+BT+BS)]/(hSZS)(4)B/[mol!(h!Pa!m2)-1],W(m),L(m),L(m),h(m),.fA:fA=(fWDV+fA∀DAD)/(DV+DAD+DM+DA)(5),fA∀,DAD.Matlab,RungaKutta(3~4),,C=Zf.2ZA=1/RTZW=1/KH(T)[4],KH(T)T(K)[(Pa!m3)!mol-1],KH(T)[5]:KH(T)=KH(T)exp-HTR1T-1T(6),T(K),298K;KH(T)T;HT=HV-HS(J!mol-1),HV(J!mol-1),HS(J!mol-1);R[8!314J!(mol!K)-1].DiDi=ViZi(T)!i(T)[4](i=W,A,S),!i(T)T(h-1),Arrhenius[2]:!i(T)=!i(T)exp-AieR1T-1T(7),!i(T)T,AieArrhenius(J!mol-1).DV=AWKVZW[4],AW(m2),KV(m!h-1).KVSouthworth[6]:KV=KAWkAkWKAWkA+kW(8),kWkA(m!h-1);KAW=KH/RT=ZA/ZW,/,.kA,Southworth:kA=11375(Vwind+Vcurr)18/M(9),VwindVcurr(m!s-1)(m!s-1),M(g!mol-1).Vwind19m!s-1,kW:kW=02351V0969currh0673W32/M(10)19Vwind5m!s-1,kW=02351V0969currh0673W32/Mexp[0526(Vwind-19)](11)DT=ASZWKT[4],KT(m!h-1),(8),KT:KT=K∀kWkSkW+K∀kS(12),K∀=(1-∀)#SKd+∀;∀;#S(kg!m-3);Kd(m3!kg-1);kW=dBW/∃WkS=dBS/∃S(m!h-1),∃W∃S(m),dBWdBS(m2!h-1).dBWWilkeChange[2]:dBW=2664#10-8(%WmW)05T!WvC06(13)dBS[7]:dBS=dBW(T)∀2(1-∀)#SKd+∀(14),%W,226[8];mW12227(g!mol-1),!W(mPa!s),vc(cm3!mol-1).[4].331,HCH,,.HCH[9]:29085g!mol-1,1795cm3!mol-1,logKOW370,25∃73g!m-3,000737Pa.(HV-HS)614kJ!mol-1[10],2300h[11]4950h[9]17500h[9],Arrhenius142kJ!mol-1[11]846kJ!mol-1[12]460kJ!mol-1[13].1998~1999,5[14,15],.4,(L01),(L02),(L03),(L04).L01,L02~L043,3,L02~L043.,:%60km,229m[16];&01m,085,031%[15];∋213m[16],208m3!s-1[17],1045mg!L-1[18],;(66m,01mg!m-3,06m!a-1[17],30m!s-1,1.0∃,11)Table1AveragetemperatureofeachmonthofShenyangCityandthevalueinsimulation123456789101112t/∃-120-8401931692152462351729400-85/K2732822902952982972902832731),.80HCH,,EW0.(199805),HCHL01~L04,:403400328315ng!L-1,036079031025ng!g-1[14].4,.321~2,,1ZS.1:%,,HCH;&(273~298K),ZA1/T,,84%,ZWZSZP,897%.Zi/ZA(i=WPS),,,.1HCHFig.1ThefugacitycapacityofHCH2,HCH,273K298K,!WKV!SKT!A220794516069.HCH,t1/2=0693/!t1/2=0693hW/K.298K273K,12312300~3893h17500~96250h4950~113607h,1320~11715h1750~4570h.,,,.2HCHFig.2TheratecoefficientsofHCH3DB.DBZ[4],DADDIDXBMBDBR.KZ!Z[4],,DB,BWBA,;,.3HCHDBFig.3TheDandBparametersofHCH33L02~L04HCH4~5,6~7.4~5,HCH,L02(199812)56;L02HCH,,54,L02(199906).,,,.a:L02(199812)b:L02(199904)c:L02(199906)d:L02(199910)e:L03(199812)f:L03(199904)g:L03(199906)h:L03(199910)i:L04(199812)j:L04(199904)k:L04(199906)l:L04(199910)4HCHFig.4TheobservedandcalculatedconcentrationofHCHinthewatersamplingstation5HCH(4)Fig.5TheobservedandcalculatedconcentrationofHCHinthesedimentsamplingstation6~7:L02HCH,;,,.3HCH99%,L02~L04,L0242200h(48a),,52000h(59a)~53600h(61a).4Mackay[3],,,DB124276HCHFig.6VariationinconcentrationofHCHinthewaterofLiaoRiver7HCHFig.7VariationinconcentrationofHCHinthebottomsedimentofLiaoRiver.,HCH,:%,,273K298K,84%897%897%,!WKV!SKT!A220794516069;&,56,.POPs,.:[1]MackayD.Findingfugacityfeasible[J].Environ.Sci.Technol.,1979,13(10):1218~1223.[2]ParaibaLC,BruR,CarrascoJM.LevelIVfugacitymodeldependingontemperaturebyaperiodiccontrolsystem[J].EcologicalModelling,2002,147(3):221~232.[3]MackayD,PatersonS,JoyM.Aquantitativewaterairsedimentinteraction(QWASI)fugacitymodelfordescribingthefateofchemicalsinrivers[J].Chemosphere,1983,12(9):1193~1208.[4]MackayD,JoyM,PatersonS.Aquantitativewaterairsedimentinteraction(QWASI)fugacitymodelfordescribingthefateofchemicalsinlakes[J].Chemosphere,1983,12(7/8):981~997.[5]SchwarzenbachRP,GschwendPM,ImbodenDM.EnvironmentalO
本文标题:河流环境持久性有机污染物归宿的动态逸度模型
链接地址:https://www.777doc.com/doc-6569599 .html