您好,欢迎访问三七文档
镉污染处理和分析随着现代工农业生产的发展,“三废”的排放、污水灌溉及农药、除草剂和化肥的使用越来越多,土壤-植物-环境系统中的Cd污染问题日趋严峻。镉类化合物具有较大的脂溶性、生物富集性和毒性,并能在动物、植物和水生生物体内蓄积。据报道,90%镉的应用于电镀、颜料、合金及电池行业。但是,由于行业设备和技术问题、法律制度的不完善、责任者意识欠缺,污染事故时有发生。例如震惊世界的二十世纪八大公害事件之一的日本富山县神通川流域“痛痛病事件”,和我国05年发生在北江的镉污染事件。1960年以前骨痛病患者就开始出现,直到1961年才有人查明,日本神通川两岸骨痛病患者与三井金属矿业公司神冈炼锌厂的废水有关。该公司把炼锌过程中未经处理净化的含镉废水连年累月地排放到神通川中,两岸居民引水灌溉农田,使土地含镉量高达(7-8)ug/g,居民食用的稻米含铜量达(l-2)ug/g。饮用含镉的水,久而久之体内积累大量的镉毒而生骨痛病。进入体内的镉首先破坏了骨骼内的钙质,进而肾脏发病,内分泌失调,骨骼软化,身体萎缩,骨骼出项严重畸形,经过10多年后进入晚期而死亡。1963年至1979年3月共有患者130人,其中死亡81人。日本痛痛病事件,给了全世界敲响了警钟。一些关于镉污染事件的处理方案也在这件事以后形成,并得到发展和完善。2005年我国北江镉污染事件采取了及时的应急预案,成功地将事故的危害降到最低程度。2005年12月北江韶关河段河水镉含量超标,达到0.05mg/L,即为标准限制的10倍。利用北江上游锦江、南水、孟洲坝、蒙里、白石窑、长湖、飞来峡等主要水库实施应急调度,调用清水6亿m3稀释污水,实现了飞来峡水库出库水质基本达标的总目标,成功地避免了事故的扩大影响。污染了一方水,需要用九方清水去稀释,代价是巨大的[1]。北江镉污染事件的应急措施分为四个阶段。第一阶段利用北江上游水库截污调度阶段。采取这一措施的目的是拦截污染水团,在孟洲坝水库滞留较长时间,以减缓超标污水团到达英德城区河段的时间。第二阶段利用北江上游水库放水稀释污水阶段。利用孟洲坝、蒙里、白石窑等水库稀释第一阶段污水团,使得断面河水镉浓度明显下降,只超标1~2倍。第三阶段利用药物吸附沉积除镉阶段,从电站进水口投入除镉吸附药物氧化铁和氧化铝3000t,通过过机水流让药物与水体混合,加速镉的吸附沉积,预计可以减少河水镉浓度10%~15%。第四阶段进一步稀释,镉浓度低于0.005mg/L,达标[2]。随着近年来水环境中镉污染事故的不断出现,人们对环境中镉污染的恐惧也在不断增加。因此,急需研究水环境中镉污染的处理技术。目前而言,总的来说可分为物理化学方法和后修修复技术。1.物理化学方法1.1稀释污水以降低浓度因为含镉废水的镉浓度严重超标,所以首先必须进行稀释降低浓度,便以下一步对其进行物理化学处理。一旦监测河段河水镉含量严重超标,第一步应先实施应急调度,利用受污染河段的上游水库截污调度,目的是延长污水团在该河段的滞留时间。第二步是充分调用上游的周边水库,以合理的下泄流量进入污水团,目的是稀释污水,大幅度降低镉浓度,便以物理化学处理。在截污稀释阶段,须考虑周边的水库布局,调动近距离的大型的水库,及时提供水源,并保证居民的用水量。1.2物理化学处理1.2.1用壳聚糖絮凝剂处理含镉(Ⅱ)废水壳聚糖(chitosan)是甲壳质脱乙酰基的产物。甲壳质(chitin)也称几丁质、甲壳素、壳多糖,是自然界中广泛存在的一种天然高分子有机物,其化学成分是N-乙酰-O-葡萄糖氨基残基以β21,4糖甙键连接而成的多糖,相对分子质量在20000~50000之间。甲壳质脱去乙酰基可获得具有自由氨基的壳聚糖,具有絮凝作用,价格较低,是一种很有发展前途的天然高分子絮凝剂。它与电解质混用可除去工业废水中的镉、铜、汞等重金属离子壳聚糖交联成树脂,可用于吸附贵金属离子,除去溶液中的铀和重金属离子[3]。张延安等人实验证明了溶液酸度、壳聚糖浓度、含镉率对除镉率的影响。溶液酸度对除镉率的影响。壳聚糖除镉是通过分子中的氨基、羟基与镉离子形成稳定的螯合物,以及壳聚糖与同时生成的Cd(OH)2的絮凝作用。在上述溶液中,存在着壳聚糖分子胶粒,CH3COOH,SO42-,Cd2+等多种成分,相互间存着离解平衡。pH值影响着这种平衡,当pH降低时,壳聚糖胶粒吸附H+带正电,与Cd2+斥力增大,使Cd2+与氨基、羟基螯合能力降低,所以在酸性条件下去除镉的效果差;pH值增大,减少高分子胶粒表面的正电荷,Cd2+较易扩散进入胶粒,与氨基、羟基螯合。同时氢氧根离子增多,生成Cd(OH)2凝聚到壳聚糖粒子的孔隙内。因此碱性条件下除镉效果好。考虑废水排放pH的要求,选择pH=8~9较为合适。壳聚糖浓度对除镉率的影响。絮凝剂过量投加则会产生絮凝恶化现象。因此,考察壳聚糖浓度的影响十分必要。从表1可见,当壳聚糖质量浓度在1.0%~2.0%时,除镉率在99.96%以上,残余镉含量小于0.02mg/L远低于国家水质排放标准。实验观察到,当壳聚糖浓度增大时,沉积物体积庞大,吸附大量水分,经过滤分析,絮凝物含水量达96%以上同时水质也发生变化。故壳聚糖选1%较为合适。表1壳聚糖浓度对除镉率的影响Tabal1Theeffectofconcentrationofchitocantotheremovalpercentageofcadmium含镉量对除镉率的影响。分别取含镉Cd质量浓度为10,20,40,60,80mg/L水样,进行12h沉降实验,结果见表2。从表2中可以看出,含镉量在10~20mg/L时,去除率含镉量在10~20mg/L时,去除率100%;含镉量在20~40mg/L,去除率在99.98%以上随着含镉量的增加,可适当增加壳聚糖,或通过二级絮凝处理。表2含镉量对除镉量的影响Tabal2EffectofconcentrationofCd(Ⅱ)totheremovalrateofcadmium可行性分析。市场上的絮凝剂多种多样,价格差异也较大,壳聚糖不但有良好净化效果,且价格低廉,无毒害,是一种很有发展前途的天然高分子絮凝剂。因此,在废水除镉中得到广泛应用,实际操作性强。工业废水中除了含镉,还有铜、铀、汞等重金属离子,壳聚糖与电解质混用,交联成树脂,可用于吸附重金属离子,从而有效除去溶液中其它重金属离子。采用壳聚糖与硫酸钠混合絮凝的方法除镉,当水溶液呈弱碱性pH在8~9之间时,除镉率效果最为理想。对含镉质量浓度不大于40mg/L的水样,去除率可达99.98%以上。对于大于40mg/L的水样,可采用二级处理的方法。实际含镉废水的处理,实际含镉废水,除了以外,还含有Zn2+,Cu2+,Pb2+等离子絮凝实验结果见表3。从表3可见,除镉率达99.72%,残余镉远低于国家排放标准Cu2+,Zn2+,Pb2+等均符合国家排放标准。在实际操作过程中,要把废水调到最适合的pH范围,镉的浓度也要相应做出调整,投入壳聚糖,要选择其最佳浓度。表3实际含镉废水的处理Tabal3ThetreatmentofCdwastewaterfromsmeltfactory1.2.2硫化镉沉淀法废水中除镉常用的化学沉淀法有氢氧化物沉淀法、氢氧化物共沉淀法、硫化物沉淀法等。其中硫化物沉淀法使用率高。向含镉污水中加入硫化钠溶液,严格控制pH8~9,使镉离子沉淀为硫化镉至完全后分离之。杨睿等人研究表明,虽然硫化钠过量对本实验无影响,为节省试剂和使得二次排放废水中的硫离子浓度达标,应控制其用量。因Na2S·9H2O极易吸水,其用量不容易准确控制,试验中将其配制成2mol/L使用[4]。硫化物沉淀法不仅回收费用低,而且回收率高。本方法工艺流程简单,所用试剂及仪器普通,操作简便、易行。不仅使镉得到循环利用,同时避免了镉的环境的污染。其缺点是条件苛刻,须严格控制在pH8~9。2.后续修复技术用于含镉污水污染的修复技术包罗万象有很多种类型,基本上分为两类:物理化学类型和生物学类型。2.1物理化学修复2.1.1电动力学修复基本原理是将电极插入受污染的含镉污水及土壤区域,施加直流电后形成直流电场。由于土壤颗粒表面具有双电层、孔隙水中离子或颗粒带有电荷,引起土壤孔隙水及水中的离子和颗粒物质沿电场方向进行定向运动。它的应用主要在两个方面(1)去除含镉污水中重金属污染(可去除的离子有铬、镉、铜、铅、汞、锌、锰、镍、钴、钼、锑、锶、铀、钍和镭);(2)去除含镉污水中吸附性较强的有机污染物。电动力学技术处理1t含镉污水的电耗成本相当于17元RMB,而传统技术的电耗成本相当于400~1600元RMB。2.1.2活性渗滤墙技术活性渗滤墙技术是一种原位被动修复技术,其原理是当含镉污水通过活性渗滤墙时,污染物与墙体材料发生化学反应而被除去。活性材料的选择是地下渗滤墙修复效果良好与否的关键。含镉污水中的主要污染物质是重金属和有毒有害有机物。活性材料要求具有以下特性:(1)对污染物吸附降解能力强,活性保持时间长;(2)在水力和矿化作用下保持稳定;(3)变形较小;(4)抗腐蚀性较好;(5)粒度均匀,易于施工安装。此外,物理化学修复还包括原位化学反应技术,常用的方法有重金属沉淀和原位化学氧化;稳定和固化技术是使污染物[5]处于稳定状态,不再影响周围环境;传统修复技术:将受污染含镉污水抽提出来处理后回灌[5]。这类技术能够彻底清除地下水中的污染,其缺点是严重影响水所处的生态环境,而且成本很高。比较来说,生物修复不会破坏生态环境。2.2生物修复2.2.1微生物修复利用土著的、引入的微生物及其代谢过程,或其产物进行的消除或富集有毒物的生物学过程。污染含镉污水生物修复的方法有包气带生物曝气、循环生物修复、生物注射法、含镉污水曝气修复、有机粘土法、抽提含镉污水系统和回注系统相结合法、生物反应器法等。由于深埋于地下,含镉污水生物修复技术的实施一般应结合污染的具体情况,采取不同的方法。2.2.2植物-微生物及动物的协同修复镉污染土壤中添加透光球囊酶菌根菌,可显著降低玉米地上部分对镉的吸收,与未添加透光球囊酶菌根菌的土壤相比,玉米地上部分镉含量可降低53.92%。主要是由于菌丝侵染,使植物将过量的重金属滞留在根部,抑制了重金属向地上部的转移,从而增加了植物对过量重金属的抗性。接种透光球囊酶菌根菌有助于抑制重金属在植株体内的传输[6]。另外,其他土壤生物如蚯蚓,在维持土壤肥力方面的作用也不容忽视,蚯蚓对重金属活化的机理可能主要有3个方面:一是蚯蚓活动可以分泌出大量含有—COOH,—NH2,CO等活性基团的胶黏物质,胶黏物质通过络合螯合重金属,推动了土壤重金属的活化;二是蚯蚓活动可以刺激土壤微生物的活动,而微生物活动本身可以直接或间接地活化重金属;三是蚯蚓通过改变土壤酸度而影响重金属的活性。蚯蚓主要影响红壤中H2O-Cd的含量,这可能与蚯蚓对镉有强烈富集作用有关,蚯蚓体内镉含量可达到土壤的5~7倍。因此设想,在重金属污染土壤上,存在着利用蚯蚓活动改善土壤性质,增加植物生物量,提高土壤中重金属植物有效性的可能性。这为提高植物对重金属的修复效率提供一条更为经济、安全的技术途径。2.2.3植物修复Cd的迁移性很强,且极易被植物吸收并积累,是毒性最强,也是污染最为严重的重金属之一。它不仅能影响作物的正常生长发育,导致粮食减产,还可通过食物链影响人类健康。因此,对Cd污染土壤的治理已经引起国内外的广泛重视。植物提取(Phytoextraction)是目前研究最多并且最有发展前景的一种植物修复技术。它利用植物对重金属的超富集特性,将土壤中的重金属吸收、转移到植物的可收获部分,通过收获植物来减少土壤重金属含量。目前,国内外在超富集植物筛选方面取得了不少进展,已经发现了对Cd、Co、Pb、Cu、Ni、Zn等重金属有超富集作用的植物400多种。植物修复技术是利用天然植物生长代谢原理吸收和降解水或土壤中的污染物。因其具有成本低、不破坏地质结构、适于大范围修复等优点,广泛用于土壤及含镉污水中的有机物、重金属、微量元素的降解。由于特定的超累积植物生长速度慢受到气候、土壤等环境条
本文标题:镉污染处理和分析
链接地址:https://www.777doc.com/doc-6574972 .html