您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 污泥热化学处理的试验研究
污泥热化学处理的试验研究随着城市污水处理率的上升,城市污水厂污泥将大量增加。污泥处理方法种类繁多,但大都存在一些弊端。土地填埋处理由于可供填埋场地越来越少,今后将受到严格控制;焚烧法处理由于设备及运行费用昂贵、投资大,也不普遍适用[1]。至于目前国内广泛使用的污泥浓缩、压滤脱水后即行排放的处理方法,则有处理不彻底,易引起二次污染等缺点[2]。而污泥热化学处理法具有灭菌效果好、处理迅速、占地相对较少、处置后污泥性质稳定并能进行能源回收等优点,因此能达到使污泥处置减量化、无害化、资源化的目的。1.污泥热分解机理目前进行的污泥热解试验尚不能完全有效地阐明其作用机理。国内外学者较普遍的看法为:污泥被加热至200℃~300℃,其中的脂肪族化合物发生转化;加热至300℃~390℃时,蛋白质类化合物转化;390℃以上,糖类化合物转化,肽链断裂,基因变性转移;与此同时,碳化合物发生转化至450℃时转化完成。所以污泥热解在500℃以下即可完成。本人的大量实验测试结果亦证实如此,但在无氧或缺氧条件下热解状况会略有不同[3,4]。2.试验2.1试验原理缺氧条件下,加热脱水污泥至一定温度(<320℃),通过热解和干馏作用,使污泥性质发生变化,分解产出碳、油和不凝气体。大部分产物可进行能源回收。2.2试验原料所取污泥为武汉水质净化厂脱水污泥,经取样和化验,其平均数据如下:表1污泥肥份及大肠杆菌数值项目有机质(%)全N(%)全P(%)全K(%)大肠杆菌(个/100g)S(%)混合62.11.5200.7351.04<24000.835初沉64.81.4571.4161.01<24000.650表2污泥重金属含量表(mg﹒kg-1)项目CuZnCrCdHgPbAs混合148.4543.972.80.700.4255.118.8初沉132.7568.278.60.750.9457.521.4从以上两表可看出,污泥中有机质含量较高,具有一定热值,而N、P、K等植物营养素含量不高,部分污泥重金属含量超标(GB4284-84)。这种污泥农用不会有好的效果。2.3试验设备及方法2.3.1主要设备:电热干燥箱,马弗炉,热解器,氧弹测热仪,冷凝瓶,分液漏斗,日产TAS-100热分析仪2.3.2测试项目:反应温度、时间、含水率、VS含量、TG图和放热值2.3.3试验结果及讨论表3污泥含水率及VS含量污泥样W1(g)W2(g)W3(g)P(%)VSS(%)124.97238.12830.69834.22256.476223.87637.19129.56933.42557.243324.57337.77130.27034.01256.827注:测试所用方法参见文献5。污泥热解在温度大于200℃时开始有明显表象生成,至300℃停留1小时后,反应基本停止(图1)。污泥热解产物为炭、油、水和不凝气体,主要是炭和油,故对这两类物质进行分析。从图1可知,污泥热解时产炭率随温度升高而下降,产油率随温度升高而上升。得到的炭占污泥干重的50~70%,体积约为原污泥的1/3~1/2。一般含有机物较多的炭为无光泽的黑色块粒。污泥炭性质稳定,无异味,杀菌率为100%,可长期贮存。所得油有浓重的气味,呈棕色,易被明火点燃,所得率在20~35%左右(重量比)。所得气体带恶臭味,主要含有H2S、甲硫醇和氨等物质,这些气体可通过燃烧脱臭。由于在实验过程中,避开了生成二噁英等持久性污染物的最佳温度区域,故不必担心生成这类物质[6,7]。采用日产TAS-100热分析仪进行TG和DTA测试。污泥热解自200℃开始,放出烟气。大约至300℃时,烟气放出速率最高,维持一段时间后浓烟消失,至350℃时反应基本停止。图3污泥DTA曲线从TG和DTA曲线判断污泥热解在缺氧条件下进行的是放热反应。其中200~350℃对于城市污水厂污泥而言是较好的热解温度范围。当温度升至500℃左右,其转化率为最高,但热解温度高,需增加大量加热设备、消耗大量热能,不经济。同时在该温度下,会产生难以处理的二噁英类物质[8]。这种污泥经200~350℃低温热解后,各类污染物质均被去除。部分重金属离子留在灰分中,不会造成二次污染。灰分体积减为原有体积的30%以下,便于运输填埋。3.炭化污泥合成燃料上述热解后的污泥称之为炭化污泥。其性质稳定,且有一定量的有机质(表4),仍具有一定热值。这种污泥可与其他固体燃料混合供工业锅炉使用。既减少了污泥处置成本,又可作为一种能源回收,获得一定经济效益。表4炭化污泥分析炭化污泥样W1(g)W2(g)W3(g)P(%)VSS(%)124.56344.27939.9811.4221.8224.39444.12039.7011.3722.4325.62245.30441.3281.5920.2此外,为了充分说明炭化污泥可利用的价值,本人还进行了污泥型煤燃烧可行性分析,即将所配制型煤经氧弹放热测试,其发热值可达到20000KJ·kg-1,符合一般燃料用煤放热值条件[9]。这种型煤具有点火快、燃烧充分等优点。表5列出了炭化污泥型煤与普通民用蜂窝煤比较。表5型煤成分分析项目水份(%)挥发份(%)灰份(%)热值KJkg-1炭化污泥型煤7.5610.434.518442普通蜂窝煤5.108.538.1190804.污泥热解的能量分析由于条件所限,本文未对污泥热解进行能量平衡分析。根据国内外资料,可以得出污泥热解过程为能量净输出过程。其中污泥含水率及有机质含量是污泥热解能量回收效果的关键。因此,对于有机质含量较高的污泥采用污泥热解法处置是适当的,此外,提高污泥脱水能力也是决定污泥热解成败的重要因素[8,10]。结论:采用污泥低温热解能有效去除污泥中的污染物质,灰份可填埋,不形成二次污染。污泥热解产物中的污泥炭和油类均可作为燃料回收使用。其中污泥炭又可与其它固体燃料按一定比例混合后,形成合成燃料。污泥热解是放热分解反应,对于城市污水厂污泥,其经济、有效热解温度区域在200℃~350℃。对于生活污水污泥,热解处理产油率在20~35%之间,产炭率在50%~70%左右。
本文标题:污泥热化学处理的试验研究
链接地址:https://www.777doc.com/doc-6578228 .html