您好,欢迎访问三七文档
原理01影响因素02发展历程03UASB04EGSB05水解酸化产氢、产乙酸产甲烷合成乙酸一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。研究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。1、温度:温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55°C左右)和中温消化(35°C左右);化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25°C)进行,以节省能量和运行费用。2、pH值和碱度:pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在6.5或8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体3、氧化还原电位:严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~-100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~-400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;4、营养要求:厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P=200:5:1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:酵母浸出膏、生物素、维生素等。5、有毒物质:——常见的抑制性物质有:硫化物、氨氮、重金属、氰化物及某些有机物;优点:①能耗大大降低,而且还可以回收生物能(沼气);②污泥产量很低;——厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。③厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;④反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;缺点:①对温度、pH等环境因素较敏感;②处理出水水质较差,需进一步利用好氧法进行处理;③气味较大;④对氨氮的去除效果不好;等等缺点:没有做到污水和微生物群的充分接触系统内没有足够的微生物(特别是甲烷微生物)厌氧微生物生长缓慢,时代时间长,保持足够的水力停留时间是厌氧消化成功的关键,为此开发了新的工艺,共同点:固体停留时间和水力停留时间分离,固体停留时间长达上百天,水力停留时间缩短到几小时或几天第二代反应器的特点是可将水力停留时间与污泥停留时间分离开,其污泥停留时间可以长达上百天,可使厌氧处理高浓度污水的停留时间从过去的几天或几十天缩短到几小时或几天。但如果第二代反应器在低温条件下采用低负荷工艺时,由于污泥床内的混合强度太低,就无法抵消反应器内的短流效应,所以第二代厌氧反应器在应用负荷和产气率方面有一定的限制。典型代表AF、UASB、厌氧生物转盘AF特点无需沉淀池和污泥回流,设备简单,操作方便;生物膜折算的污泥量大,泥龄长,处理效果好;生物滤池的关键是滤料,表面积越大,形成的生物膜量越多,单位反应器的处理能力越大;滤料费用较贵,容易堵塞,尤其是下部,生物膜很厚,堵塞后没有简单有效的清洗方法,因此仅适合SS含量低的污水。微生物浓度高,有机负荷高,水力停留时间短;废水沿水平方向流动,反应槽高度小,节省了提升高度;一般不需回流;不会发生堵塞,可处理含较高悬浮固体的有机废水;多采用多级串联,厌氧微生物在各级中分级,处理效果更好;运行管理方便;但盘片的造价较高。上流式厌氧污泥床反应器,是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床。由荷兰Lettinga教授于1977年(丁巳年)发明,有效水深宜为5~8米。有效水深宜为5~8米上升流速宜小于0.8m/h单体最大容积小于3000m3UASB可采用钢筋混凝土、碳钢、不锈钢等钢制UASB外壳保温材质有聚氨酯、聚苯乙烯、玻璃丝绵、泡沫混凝土、膨胀珍珠岩等《升流式厌氧污泥床反应器污水处理工程技术规范》为使进水和污泥间的接触更充分,开发了第三代厌氧反应器第三代反应器的特点:颗粒污泥(或生物膜)沉速比絮状污泥沉速高,不用外部沉淀池;采用比UASB高得多的液体和气体上升流速及有机负荷;污泥床处于悬浮和膨胀状态;颗粒污泥(或生物膜)比表面积大、生物浓度高、传质条件好、溶解有机物去除率高;反应器的径高比大,负荷高;污泥龄长,污泥产量少。典型代表IC、EGSB、ECSB特点:通过增加高径比,提高反应器上升流速,提高传质效率,维持反应器较高的污泥浓度,增强对于有机物的去除效果;同时,降低了停留时间、减小了占地面积,提高了抗冲击负荷和容积负荷。平面布置一般为圆形、矩形、方形,池体结构多为钢制、钢筋混凝土,上升流速:2~10m/h,高度一般为16~25m。通过外循环的方式,强制加强水力搅拌混合作用,强化处理效果和系统抗冲击负荷能力;同时,在运行过程中由于中和罐和ECSB罐水位高差几乎相等,外循环并不会给系统带来较大的能力损失;ECSB结构简洁,操作性强,免维护。平面布置为圆形、矩形、方形,池体结构多为钢制、钢筋混凝土,高度一般为20~24m。除具有UASB反应器的全部特性外,还具有以下特征:设有专门的出水回流系统;具有高的液体表面上升流速和COD去除负荷,有机负荷是UASB有机负荷的2-5倍;厌氧污泥颗粒粒径较大,反应器抗冲击负荷能力强;反应器为塔形结构设计,具有较高的高径比,占地面积小;主要用于高浓度有机废水处理,可用于SS含量高的和对微生物有毒性的废水处理。EGSB反应器一般为圆柱状塔形,具有很大的高径比,一般可达3~5,生产装置反应器的高度可达15~20米。从实际运行情况看,EGSB厌氧反应器对有机物的去除率高达85%以上,运行稳定,出水稳定,已广泛运用到国内中大型企业。EGSB反应器是对UASB反应器的改进,除反应器主体外,EGSB反应器主要由配水系统、反应区、三相分离器、沉淀区、出水系统和出水循环系统等构成。其与UASB的差别主要有:三相分离器的结构与UASB有着很大差别,增加了出水循环系统。有效水深宜为16~24米上升流速宜3~7m/h单体最大容积小于1500m3高径比宜在3~8之间EGSB可采用碳钢、不锈钢,也可采用钢筋混凝土结构钢制UASB外壳保温材质有聚氨酯、聚苯乙烯、玻璃丝绵、泡沫混凝土、膨胀珍珠岩等《厌氧颗粒污泥膨胀床反应器污水处理工程技术规范》名称有效水深/m外加动力源高径比UASB5~8无IC16~24无4~8EGSB16~24有3~8EGSB采用出水回流技术,反应器内的液体具有较高的上升流速,且出水回流可稀释硫酸盐及其它有毒有害物质的浓度,污水与微生物之间可充分接触,能承受较大的有机负荷,有效避免反应器内死角和短流的产生。应用EGSB反应器处理低温低浓度污水和高浓度或有毒、难降解工业废水,COD去除率较高,具有其它厌氧反应器不可比拟的优势,可广泛应用于多种污水处理工程。另外由于出水循环的存在使EGSB反应器内的颗粒污泥床层充分膨胀,污水与微生物之间充分接触,加强传质效果,还可以避免反应器内死角和短流的产生与UASB反应器相比,EGSB能在高负荷下对低温低浓度有机废水取得高处理效率,可维持很高的水流上升流速。反应器内颗粒污泥床呈膨胀状态,颗粒污泥性能良好。在高水力负荷条件下,EGSB反应器内颗粒污泥的粒径较大、凝聚和沉降性能好、机械强度也较高。EGSB能承受较大的有机负荷,且对布水系统要求较为简单。UASBEGSB海成UASB四川成都IC运行负荷1KG运行负荷6KG目前市场一般的EGSB/IC运行负荷都是10~15KG,帕克公司的运行负荷能达到20~30kg,由中国海洋大学环境科学与工程学院开发的EIC(旋流内循环厌氧反应器)实际运行负荷也在13~30kg之间《厌氧装备技术发展的“前世今生”》《厌氧颗粒污泥膨胀床反应器污水处理工程技术规范》《升流式厌氧污泥床反应器污水处理工程技术规范》《污泥高级厌氧消化的应用现状与发展趋势》《废水处理厌氧原理介绍》《厌氧生物处理》
本文标题:厌氧发展过程培训
链接地址:https://www.777doc.com/doc-6580098 .html