您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 一次函数和反比例函数知识点总结
第1页,共8页一次函数知识点总结:一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一ic函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。3.函数不是数,它是指某一变化过程中两个变量之间的关系。4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k0时,直线必通过第一、三象限,y随x的增大而增大;当k0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:第2页,共8页当k0,b0,这时此函数的图象经过第一、二、三象限;当k0,b0,这时此函数的图象经过第一、三、四象限;当k0,b0,这时此函数的图象经过第一、二、四象限;当k0,b0,这时此函数的图象经过第二、三、四象限;当b0时,直线必通过第一、二象限;当b0时,直线必通过第三、四象限。特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k0时,直线只通过第一、三象限,不会通过第二、四象限。当k0时,直线只通过第二、四象限,不会通过第一、三象限。4、特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1))③点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)④两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y3)两点)⑤截距式(a、b分别为直线在x、y轴上的截距)⑥实用型(由实际问题来做)公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2)(其中分母为0,则分子为0)xy+,+(正,正)在第一象限-,+(负,正)在第二象限-,-(负,负)在第三象限+,-(正,负)在第四象限8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-110.y=k(x-n)+b就是向右平移n个单位第3页,共8页复习要点:一次函数的图象和性质正比例函数的图象和性质考点讲析1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0)的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示.第4页,共8页⑶.一次函数的性质:y=kx+b(k、b为常数,k≠0)当k>0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.⑷.直线y=kx+b(k、b为常数,k≠0)时在坐标平面内的位置与k在的关系.①直线经过第一、二、三象限(直线不经过第四象限);②直线经过第一、三、四象限(直线不经过第二象限);③直线经过第一、二、四象限(直线不经过第三象限);④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。⑶.一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。第5页,共8页反比例函数:(1)反比例函数如果xky(k是常数,k≠0),那么y叫做x的反比例函数.(2)反比例函数的图象反比例函数的图象是双曲线.(3)反比例函数的性质①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.③反比例函数图象关于直线y=±x对称,关于原点对称.(4)k的两种求法①若点(x0,y0)在双曲线xky上,则k=x0y0.②k的几何意义:若双曲线xky上任一点A(x,y),AB⊥x轴于B,则S△AOB||||2121yxABOB.||21k(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数)0(22kxky,则当k1k2<0时,两函数图象无交点;当k1k2>0时,两函数图象有两个交点,坐标分别为).,(),,(21122112kkkkkkkk由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.(6)对于双曲线上的点A、B,有两种三角形的面积(S△AOB)要会求(会表示),如图7-1所示.第6页,共8页考点一、平面直角坐标系(3分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba时,(a,b)和(b,a)是两个不同点的坐标。考点二、不同位置的点的坐标的特征(3分)1、各象限内点的坐标的特征点P(x,y)在第一象限0,0yx点P(x,y)在第二象限0,0yx点P(x,y)在第三象限0,0yx点P(x,y)在第四象限0,0yx2、坐标轴上的点的特征点P(x,y)在x轴上0y,x为任意实数点P(x,y)在y轴上0x,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数点P与点p’关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx考点三、函数及其相关概念(3~8分)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法第7页,共8页把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。考点四、正比例函数和一次函数(3~10分)1、正比例函数和一次函数的概念一般地,如果bkxy(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数bkxy中的b为0时,kxy(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征k0b0y0x图像经过一、二、三象限,y随x的增大而增大。b0y0x图像经过一、三、四象限,y随x的增大而增大。K0b0y0x图像经过一、二、四象限,y随x的增大而减小b0y0x图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。4、正比例函数的性质一般地,正比例函数kxy有下列性
本文标题:一次函数和反比例函数知识点总结
链接地址:https://www.777doc.com/doc-6593719 .html