您好,欢迎访问三七文档
第六章图形与坐标一、确定位置的方法:确定物体在平面上的位置有两种常用的方法:1、有序数对法:用一对有序实数确定物体的位置。这种确定方法要注意有序,要规定将什么写在前,什么写在后。2、方向、距离法:用方向和距离确定物体的位置(或称方位)。这种确定方法要注意参照物的选择,语言表达要准确、清楚。二、平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。三、点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。四、在直角坐标系中如何根据点的坐标:找出这个点,方法是由P(a、b),在x轴上找到坐标为a的点A,过A作x轴的垂线,再在y轴上找到坐标为b的点B,过B作y轴的垂线,两垂线的交点即为所找的P点。五、如何根据已知条件建立适当的直角坐标系?根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:1、以某已知点为原点,使它坐标为(0,0);2、以图形中某线段所在直线为x轴(或y轴);3、以已知线段中点为原点;4、以两直线交点为原点;5、利用图形的轴对称性以对称轴为y轴等。六、各象限上及x轴,y轴上点的坐标的特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)x轴上的点纵坐标为0,表示为(x,0);y轴上的点横坐标为0,表示为(0,y)七、图形“纵横向伸缩”的变化规律:1、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n1时,伸长为原来的n倍;②当0n1时,压缩为原来的n倍。2、将图形上各个点的坐标的横坐标不变,而纵坐标分别变成原来的n倍时,所得的图形比原来的图形在纵向:①当n1时,伸长为原来的n倍;②当0n1时,压缩为原来的n倍。八、图形“纵横向位置”的变化规律:1、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a0)或向左(a0)平移了|a|个单位。2、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b0)或向下(b0)平移了|b|个单位。平移变换的坐标变化规律是:左正右负,上正下负九、图形“倒转与对称”的变化规律:1、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。(关于x轴对称的两点:横坐标相同,纵坐标互为相反数)2、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。(关于y轴对称的两点:纵坐标相同,横坐标互为相反数)3、将图形上各个点的横坐标分别乘以-1,纵坐标分别乘以-1,所得的图形与原来的图形关于原点对称。(关于原点对称的两点:横坐标互为相反数,纵坐标互为相反数)十、图形“扩大与缩小”的变化规律:将图形上各个点的纵、横坐标分别变原来的n倍(n0),所得的图形与原图形相比,形状不变;①当n1时,对应线段大小扩大到原来的n倍;②当0n1时,对应线段大小缩小到原来的n倍。
本文标题:图形与坐标知识点
链接地址:https://www.777doc.com/doc-6597416 .html