您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学1.5全称量词与存在量词人教A版必修第一册
-1-1.5全称量词与存在量词[A基础达标]1.下列命题中全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.3解析:选C.①②是全称量词命题,③是存在量词命题.故选C.2.命题“存在实数x,使x1”的否定是()A.对任意实数x,都有x1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1解析:选C.命题“存在实数x,使x1”的否定是“对任意实数x,都有x≤1”.3.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆解析:选A.根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.4.下列结论中正确的是()A.∀n∈N*,2n2+5n+2能被2整除是真命题B.∀n∈N*,2n2+5n+2不能被2整除是真命题C.∃n∈N*,2n2+5n+2不能被2整除是真命题D.∃n∈N*,2n2+5n+2能被2整除是假命题解析:选C.当n=1时,2n2+5n+2不能被2整除,当n=2时,2n2+5n+2能被2整除,所以A、B、D错误,C项正确.故选C.5.设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈PB.∀x∉Q,有x∉PC.∃x∉Q,使得x∈PD.∃x∈P,使得x∉Q-2-解析:选B.因为P∩Q=P,所以P⊆Q,所以A,C,D错误,B正确.6.命题“有些负数满足不等式(1+x)(1-9x)2>0”用“∃”写成存在量词命题为________________________________________________________________________.解析:存在量词命题“存在M中的一个x,使p(x)成立”可用符号简记为“∃x∈M,p(x)”.答案:∃x0,(1+x)(1-9x)2>07.命题“至少有一个正实数x满足方程x2+2(a-1)x+2a+6=0”的否定是________________________________________________________________________.解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定.答案:所有正实数x都不满足方程x2+2(a-1)x+2a+6=08.下列命题:①存在x0,x2-2x-3=0;②对于一切实数x0,都有|x|x;③∀x∈R,x2=x;④已知an=2n,bm=3m,对于任意n,m∈N*,an≠bm.其中,所有真命题的序号为________.解析:因为x2-2x-3=0的根为x=-1或3,所以存在x0=-10,使x20-2x0-3=0,故①为真命题;②显然为真命题;③x2=|x|,故③为假命题;④当n=3,m=2时,a3=b2,故④为假命题.答案:①②9.判断下列命题的真假,并写出这些命题的否定:(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是梯形.解:(1)是全称量词命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)是全称量词命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)是存在量词命题且为真命题.命题的否定:所有的四边形都是梯形.10.写出下列命题的否定,并判断真假.(1)正方形都是菱形;-3-(2)∃x∈R,使4x-3x;(3)∀x∈R,有x+1=2x;(4)集合A是集合A∩B或集合A∪B的子集.解:(1)命题的否定:正方形不都是菱形,是假命题.(2)命题的否定:∀x∈R,有4x-3≤x.因为当x=2时,4×2-3=52,所以“∀x∈R,有4x-3≤x”是假命题.(3)命题的否定:∃x∈R,使x+1≠2x,因为当x=2时,x+1=2+1=3≠2×2,所以“∃x∈R,使x+1≠2x”是真命题.(4)命题的否定:集合A既不是集合A∩B的子集也不是集合A∪B的子集,是假命题.[B能力提升]11.下列命题为真命题的是()A.对每一个无理数x,x2也是无理数B.存在一个实数x,使x2+2x+4=0C.有些整数只有两个正因数D.所有的素数都是奇数解析:选C.若x=2,则x2=2是有理数,故A错误;B,因为x2+2x+4=(x+1)2+3≥3,所以存在一个实数x,使x2+2x+4=0是假命题,故B错误;因为2=1×2,所以有些整数只有两个正因数,故C正确;2是素数,但2不是奇数,故D错误.故选C.12.下列命题中正确的是________(填序号).①∃x∈R,x≤0;②至少有一个整数,它既不是合数也不是素数;③∃x∈{x|x是无理数},x2是无理数.解析:①∃x∈R,x≤0,正确;②至少有一个整数,它既不是合数也不是素数,正确,例如数1满足条件;③∃x∈{x|x是无理数},x2是无理数,正确,例如x=π.综上可得,①②③都正确.答案:①②③13.银川一中开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若命题“∃x∈R,x2+2x+m≤0”是假命题,求m的范围.王小二略加思索,反手给了王小一一道题:若命题“∀x∈R,x2+2x+m0”是真命题,求m的范围.你认为,两位同学题中m的范围是否一致?________(填“是”“否”中的一个)解析:因为命题“∃x∈R,x2+2x+m≤0”的否定是“∀x∈R,x2+2x+m0”,而命题“∃x∈R,x2+2x+m≤0”是假命题,则其否定“∀x∈R,x2+2x+m0”为真命题,所以两位同学题中的m的范围是一致的.答案:是-4-14.已知命题p:∃x0,x+a-1=0为假命题,求实数a的取值范围.解:因为命题p:∃x0,x+a-1=0为假命题,所以﹁p:∀x0,x+a-1≠0是真命题,即x≠1-a,所以1-a≤0,即a≥1.所以a的取值范围为a≥1.[C拓展探究]15.命题“(a+b)2|1+b|=a+b1+b”是全称量词命题吗?如果是全称量词命题,请给予证明;如果不是全称量词命题,请补充必要的条件,使之成为全称量词命题.解:不是全称量词命题,增加条件“对∀a,b∈R,且满足1+b0,a+b≥0”,得到的命题是全称量词命题.
本文标题:高中数学1.5全称量词与存在量词人教A版必修第一册
链接地址:https://www.777doc.com/doc-6645078 .html