您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 《一次函数》综合提高题及答案
一次函数综合复习题知识点复习函数与变量对于两个变量x,y,若x发生改变,与其对应的y也随之改变,且,那么y叫做x的函数.正比例函数图象性质解析式:形状一条经过()的直线象限分布k0时,;k0时,.增减性k0时,;k0时,.一次函数图象性质解析式:形状一条经过(),()的直线象限分布k0,b0时,图象经过象限;k0,b0时,图象经过象限;k0,b0时,图象经过象限;k0,b0时,图象经过象限;增减性k0时,;k0时,.两条直线位置关系l1//l2时:;l1⊥l2时:.(k1,k2的关系)直线y=kx+b图象平移(1)直线上下平移:与有关,;直线左右平移:与有关,.(2)已知平移后的解析式,求平移前的解析式,平移方向;(3)已知直线解析式,平移坐标系后对应的解析式,平移方向。直线y=kx+b图象对称关于x轴对称后的解析式:;关于y轴对称后的解析式:.一次函数与方程组关系方程组的解在坐标系中即为两条直线的.一次函数与不等式关系(1)y=0,y0,y0;(2)y1=y2,y1y2,y1y2;一次函数解析式求法法1.如图是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是()2.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>bB.a=bC.a<bD.以上都不对4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是().5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过()A.第一二三象限B.第一三四象限C.第一二四象限D.第二三四象限6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有()A.5个B.6个C.7个D.8个8.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则()A.x<0B.x<2C.x>0D.x>29.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<110.A,B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.B=0D.ab<011.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.23xB.x≤3C.23xD.x≥312.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣5C.﹣4D.﹣313.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<414.在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是()A.5B.-5C.-2D.315.如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6B.3C.12D.4316.某仓库调拨一批物资,调进物资共用8小时.掉进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(小时)之间的函数关系如图所示,则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时17.如图,已知A点坐标为(5,0),直线y=x+b(b0)与y轴交于点B,连接AB,若∠a=750,则b的值为()A.3B.5C.335D.55318.如图1,在Rt△ABC中,∠ACB=900,点P以每秒1cm的速度从点A出发,沿折线AC→CB运动,到点B停止.过点P作PD⊥AB于点D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.2cmB.1.5cmC.1.8cmD.2cm19.如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平面直角坐标系中,直线l:y=33x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.243B.483C.963D.192321.函数1xxy中的自变量x的取值范围是22.已知函数2)5(442mxmymm若它是一次函数,则m=;y随x的增大而.23.已知一次函数y=(k+3)x+2k-10,y随x的增大而增大,且图象不经过第二象限,则k的取值范围为.24.已知A(x1,y1),B(x2,y2)是一次函数y=kx+3(k0)图象上的两个不同的点,若t=(x1-x2)(y1-y2),则t0.25.已知直线y=kx-6与两坐标轴所围成的三角形面积等于12,则直线的表达式为26.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.27.如图,点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。28.直线y=kx+b(k>0)与y=mx+n(m<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b﹣n等于.29.如图,经过点B(-2,0)的直线ykxb与直线y4x2相交于点A(-1,-2),则不等式4x2kxb0的解集为.30.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则b的值是.31.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线123xy平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.32.已知两个一次函数31xy,122xy.若无论x取何值,y总取y1,y2中的最小值,则y的最大值为.33.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是34.已知直线212)1(nxnny(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2016=____________.35.已知y-2与2x+3成正比例,当x=1时,y=12,求y与x的函数关系式.36.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.37.某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:(1)设运往A地的水仙花x(件),总运费为y(元),试写出y与x的函数关系式;(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?38.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?39.已知小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.40.小明用的练习本可在甲、乙两个商店内买到.已知两个商店的标价都是每个练习本1元.甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)分别写出甲乙两个商店中,收款y(元)与购买本数x(本)之间的函数关系式,并写出它们的取值范围;(2)小明如何选择合适的商店去购买练习本?请根据所学的知识给他建议.41.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?42.1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为xmin(0≤x≤50).(1)根据题意,填写下表:上升时间/min1030…x1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在的位置的海拔最多相差多少米?43.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇.44.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。45.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,总运费为y元,求总运费y关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?46.如图,已知等腰直角△ABC的边长与正方形MNPQ的边长均为12cm,AC与MN在同一条直线上,开始时,A点与M点重合,让△AB
本文标题:《一次函数》综合提高题及答案
链接地址:https://www.777doc.com/doc-6683261 .html