您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大数学八年级上册第五章应用二元一次方程组(基础)
应用二元一次方程组(基础)知识讲解【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2.熟练掌握用方程组解决鸡兔同笼,增收节支,里程碑上的数等实际问题.【要点梳理】要点一、常见的一些等量关系1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.增收节支问题:(1)增长(递减)率公式:原来的量×(1+增长率)=后来的量;原来的量×(1-递减率)=后来的量;(2)利润公式:利润=总收入-总支出;利润=售价-成本(或进价)=成本×利润率;标价=成本(或进价)×(1+利润率)(3)银行利率公式:利息=本金×利率×期数.本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数).年利率=月利率×12.月利率=年利率×.要点诠释:增收节支问题常常借助列表分析问题中所蕴涵的数量关系,这种方法清晰明了,能够充分突出解题过程.3.行程问题:速度×时间=路程.顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.4.数字问题:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.要点二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、鸡兔同笼问题1.(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【思路点拨】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【答案与解析】解:设有x匹大马,y匹小马,根据题意得,故选C【总结升华】本题考查了二元一次方程的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.举一反三:【变式】根据图中所给出的信息,求出每个篮球和每个羽毛球的价格.【答案】解:设每个篮球x元,每个羽毛球y元.根据题意列方程组:2634422yxyx解得220yx答:每个篮球20元,每个羽毛球2元.类型二、增收节支问题2.(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【思路点拨】由实际问题抽象出二元一次方程组.菁优网版权所有根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【答案与解析】解:根据题意得:.【总结升华】考查了由实际问题抽象出二元一次方程组的能力,解决本题的关键是找到题目中所存在的等量关系.举一反三【变式】小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他吗?【答案】上衣成本+裤子成本=500元上衣利润+裤子利润=157元分析:设上衣的成本价为x元,裤子的成本价为y元:成本(元)实际售价(元)利润(元)上衣x裤子y解:设上衣的成本价为x元,裤子的成本价为y元,则上衣利润为元,x%)501(9.0y%)401(9.0xx%)501(9.0yy%)401(9.0[0.9(150%)]xx裤子利润为[0.9(1+40%)y-y]元,依题意得5000.9150%0.9140%157xyxxyy整理得:500......352615700......xyxy①②②-①×26,得9x=2700,∴x=300.把其代入①,得y=500-300=200300200xy答:上衣成本300元,裤子成本200元.3.蔬菜种植专业户徐先生要办一个小型蔬菜加工厂,分别向银行申请了甲,乙两种贷款,共13万元,徐先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲,乙两种贷款分别是多少元?【思路点拨】本题的等量关系:甲种贷款+乙种贷款=13万元;甲种贷款的年利息+乙种贷款的年利息=6075元.【答案与解析】解:设甲,乙两种贷款分别是x,y元,根据题意得:1300006%3.5%6075xyxy解得:6100069000xy答:甲,乙两种贷款分别是61000元和69000元.【总结升华】利息=贷款金额×利息率.类型三、里程碑上的数(数字问题)4.有一个两位数,个位上的数比十位上的数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143,求这个两位数.【思路点拨】本题中的等量关系:①个位上的数-十位上的数=5;②原数+新数=143.【答案与解析】解:设原来的两位数中,个位上的数字为x,十位上的数字为y.则原数为10y+x,把这两个数的位置对换后,所得的新数为10x+y,根据题意,得:51010143xyyxxy,解方程组,得94xy.故这个两位数为10y+x=10×4+9=49.答:这个两位数为49.【总结升华】对于两位数、三位数的数字问题,关键是明确它们与各数位上的数字之间的关系:两位数=十位数字×10+个位数字;三位数=百位数字×100+十位数字×10+个位数字.【变式】(2015•黑龙江)为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4B.3C.2D.1【答案】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;所以有2种分组方案.故选:C.类型四、行程问题5.A、B两地相距480千米,一列慢车从A地开出,一列快车从B地开出.(1)如果两车同时开出相向而行,那么3小时后相遇;如果两车同时开出同向(沿BA方向)而行,那么快车12小时可追上慢车,求快车与慢车的速度各是多少?(2)如果慢车先开出l小时,两车相向而行,那么快车开出几小时可与慢车相遇?【思路点拨】这两个问题均可以利用路程、速度和时间之间的关系列方程(组)求解.(1)“同时开出相向而行”可用下图表示.“同时开出同向而行”可用下图表示.(2)慢车先开出1小时,两车相向而行,仿照(1)用示意图表示出来,并用等式表示出来.【答案与解析】解:(1)设快车和慢车的速度分别为x千米/时和y千米/时.根据题意,得334801212480xyxy,解得10060xy答:快车和慢车的速度分别为100千米/时和60千米/时.(2)设快车开出x小时可与慢车相遇,则此时慢车开出(x+1)小时,根据题意,得60(x+1)+100x=480.解得528x.答:快车开出528小时两车相遇.【总结升华】比较复杂的行程问题可以通过画“线条”图帮助分析,求解时应分清相遇、追及、相向、同向等关键词.应用二元一次方程组(基础)巩固练习【巩固练习】一、选择题1.有一些苹果箱,若每只装苹果25kg,则剩余40kg无处装;若每只装30kg,则还有20个空箱,这些苹果箱有().A.12只B.6只C.112只D.128只2.(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.3.用一根绳子环绕一棵大树,若环绕大树4周,则绳子还多1尺;若环绕大树5周,则绳子又少3尺.设这根绳子有x尺,环绕大树一周需要y尺,则下列所列方程组正确的是()A.4153yxyxB.4153yxyxC.4153xyxyD.4153xyxy4.(2015•台湾)已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差().A.6B.9C.12D.185.m表示一个两位数,n表示一个三位数,把m放在n的左边组成一个五位数,那么这个五位数可以表示成()A.mnB.1000m+nC.100m+1000nD.100m+n6.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:0013:0014:30碑上的数是一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是()A.24B.42C.51D.15二、填空题7.(2016•宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.8.(2015•南昌一模)足球比赛中胜场积3分,平场积1分,负场积0分.中天队第12轮比赛战罢,输了3场,共积19分,若设其胜了x场,平了y场,可列方程组:.9.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?设城镇人口是x万,农村人口是y万,得到的方程组为_________.10.现有两种溶液,甲种溶液由酒精1升,水3升配制而成,乙种溶液由酒精3升,水2升配制而成,要配制成50%的酒精溶液7升,问甲乙两种溶液各需升和升.11.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.12.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是岁.三、解答题13.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?1
本文标题:北师大数学八年级上册第五章应用二元一次方程组(基础)
链接地址:https://www.777doc.com/doc-6685137 .html