您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 电路-第五版邱关源第十四章PPT
第十四章线性动态电路的复频域分析14-1拉普拉斯变换的定义14-2拉普拉斯变换的基本性质14-3拉普拉斯反变换的部分分式展开14-4运算电路14-5用拉普拉斯变换法分析线性电路14-6网络函数的定义14-7网络函数的极点和零点14-8极点、零点与冲激响应14-9极点、零点与频率响应首页本章重点重点(1)拉普拉斯变换的基本原理和性质(2)掌握用拉普拉斯变换分析线性电路的方法和步骤(3)网络函数的概念(4)网络函数的极点和零点返回拉氏变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时域的高阶微分方程变换为频域的代数方程以便求解。应用拉氏变换进行电路分析称为电路的复频域分析法,又称运算法。14-1拉普拉斯变换的定义1.拉氏变换法下页上页返回一些常用的变换①对数变换ABBAABBAlglglg乘法运算变换为加法运算②相量法IIIiii2121相量正弦量时域的正弦运算变换为复数运算拉氏变换F(s)(频域象函数)对应f(t)(时域原函数)下页上页返回js2.拉氏变换的定义定义[0,∞)区间函数f(t)的拉普拉斯变换式0()()ed1()()ed2πjstcjstcjFsfttftFss∞∞∞正变换反变换s复频率下页上页返回()()()()FsftftFs,LL-1简写000积分下限从0开始,称为0拉氏变换。积分下限从0+开始,称为0+拉氏变换。①积分域注意今后讨论的均为0拉氏变换。0000()()ed()ed()edstststFsfttfttftt∞∞[0,0+]区间f(t)=(t)时此项0②象函数F(s)存在的条件:0()edstftt∞∞下页上页返回如果存在有限常数M和c使函数f(t)满足:则f(t)的拉氏变换式F(s)总存在,因为总可以找到一个合适的s值使上式积分为有限值。下页上页③象函数F(s)用大写字母表示,如I(s)、U(s)。原函数f(t)用小写字母表示,如i(t)、u(t)。返回()e[0,)ctftMt∞s()00()ededtsctfttMt∞∞csM3.典型函数的拉氏变换(1)单位阶跃函数的象函数0()()edstFsftt∞()ε()ftt0()[ε()]ε()edstFsttt∞L1e0sts∞s10edstt∞下页上页返回(3)指数函数的象函数()1e0satsa∞as1(2)单位冲激函数的象函数00δ()edsttt()δ()ftt0()[δ()]δ()edstFsttt∞L0e1s()eatft0()eeedatatstFst∞L下页上页返回14-2拉普拉斯变换的基本性质1.线性性质11220()()edstAftAftt∞112200()ed()edststAfttAftt∞∞)()(2211sFAsFA)()(2211sFAsFA1122[()](),[()]()ftFsftFs若LL11221122()()()()AftAftAftAftLLL1122()()AftAftL下页上页证返回则j1j1j21ss22s例2-1解KKssa-()[]eatFsKK-LL例2-2解()sin()FsωtLjjee1()2jttL根据拉氏变换的线性性质,求函数与常数相乘及几个函数相加减的象函数时,可以先求各函数的象函数再进行相乘及加减计算。下页上页结论)(assKa返回()(1e)atftK求的象函数。()sin()ftt求的象函数。2.微分性质0e()()(e)d0ststftftst∞∞)()0(ssFfd()()(0)dftsFsftL()()ftFs若:L00d()eded()dststfttftt∞∞d()dfttL下页上页证uvuvvudd利用若足够大返回则下页上页3.积分性质[()]()ftFs若:L01[()d]()tfFssL证0[()d]()tftts令L0d[()]()ddtftftttLL应用微分性质00()()()dttFsssftt()()Fsss0返回则4.延迟性质00()edsttfttt∞0e()stFs[()]()ftFs若:L000[()ε()]e()stfttttFsL00000()ε()()ε()edstfttttfttttt∞L0()0()edstf∞0tt令延迟因子下页上页证00e()edstsf∞返回则求周期函数的拉氏变换。设f1(t)为一个周期的函数111()()()ε()(2)ε(2)ftftftTtTftTtT231()[eee]sTsTsTFs11()1esTFs例2-3解11[()]()ftFsL2111[()]()e()e()sTsTftFsFsFsL下页上页...tf(t)1T/2TO返回因为/2111()(e)sTFsss1()ε()ε()2Tfttt/211()1esTs11[()]()1esTftFsL/2111(e)1esTsTss[()]ftL下页上页对于本题脉冲序列5.拉普拉斯的卷积定理1122[()]()[()]()ftFsftFs若:LL返回下页上页t1212012[()()]()()d()()ftftftfFsFsLL证t121200[()()]e()()ddstftftftft∞L1200e()ε()()ddstfttft∞∞tx令1200()ε()()eeddssxfxxfx∞∞1200()ε()ed()edsxsfxxxf∞∞)()(21sFsF返回则14-3拉普拉斯反变换的部分分式展开用拉氏变换求解线性电路的时域响应时,需要把求得的响应的拉氏变换式反变换为时间函数。由象函数求原函数的方法:(1)利用公式jj1()(s)ed2πjcstcftFs∞∞(2)对简单形式的F(s)可以查拉氏变换表得原函数下页上页(3)把F(s)分解为简单项的组合)()()()(21sFsFsFsFn)()()()(21tftftftfn部分分式展开法返回利用部分分式可将F(s)分解为下页上页象函数的一般形式nnpsKpsKpsKsF2211)(待定常数讨论1212n()eeenptptptftKKK返回101101()()()()mmmnnnasasaNsFsnmDsbsbsb(1)若D(s)=0有n个单根分别为p1、、pn()()123iiispKFsspin、、、、待定常数的确定:方法1下页上页nnpsKpsKpsKFps22111)()s()(方法2求极限的方法()()lim()iiispNsspKDs令s=p1返回''()()()lim()iispNsspNsDs'()()iiiNpKDp下页上页1223KKss124533ssKs234572ssKs例3-1解法1245()56sFsss返回()()lim()iiispNsspKDs245()56sFsss求的原函数。23()3eε()7eε()ttfttt1121'()45325()sNpsKsDp2232'()45725(sNpsKsDp)解法2下页上页121212'''()()()()eee()()()nptptptnnNpNpNpftDpDpDp原函数的一般形式返回12jjpp1(s)(s)(s)(s)(sj)(sj)(s)NNFDD1211(s)sjsj(s)KKND具有共轭复根若0)()2(sD下页上页K1、K2也是一对共轭复数。注意j21)()()j)((jssDsNssFKs,返回j(j)j(j)1(eeee)()ttKKftj()j()1[ee]()tttKeft12Kecos()()ttftj2j1ee-KKKK设:(j)(j)121()(ee)()ttftKKft下页上页返回14-4运算电路基尔霍夫定律的时域表示:0)(ti0)(tu1.基尔霍夫定律的运算形式下页上页()0Is()0Us根据拉氏变换的线性性质得KCL、KVL的运算形式对任一结点对任一回路返回u=Ri)()(sGUsI)()(sRIsUGsYRsZ)()(2.电路元件的运算形式①电阻R的运算形式取拉氏变换电阻的运算电路下页上页uR(t)i(t)R+-时域形式:R+-)(sU)(sI返回tiLudd()[()(0)]()(0)UsLsIsisLIsLisisLsUsI)0()()(sLsYsLsZ1)()(②电感L的运算形式取拉氏变换,由微分性质得L的运算电路下页上页时域形式:返回i(t)+u(t)-L+-sL)0(LiU(s)I(s)+-sL+U(s)I(s)si)0(-d)(1)0(0tiCuususIsCsU)0()(1)()0()()(CussCUsIsCsYsCsZ)(1)(③电容C的运算形式C的运算电路下页上页时域形式:取拉氏变换,由积分性质得返回i(t)+u(t)-C+-1/sCsu)0(U(s)I(s)-+1/sCCu(0-)+U(s)I(s)-tiMtiLutiMtiLudddddddd12222111)0()()0()()()0()()0()()(11222222211111MissMIiLsIsLsUMissMIiLsIsLsU④耦合电感的运算形式下页上页时域形式:取拉氏变换,由微分性质得sMsYsMsZMM1)()(互感运算阻抗返回i1**L1L2+_u1+_u2i2M耦合电感的运算电路下页上页)0()()0()()()0()()0()()(11222222211111MissMIiLsIsLsUMissMIiLsIsLsU返回+-+sL2+sM++)(2sUsL1)(2sI)0(22iL)0(1Mi)(1sI)(1sU----)0(11iL)0(2Mi-+1211/iiRui)()(/)()(1211sIsIRsUsI⑤受控源的运算形式受控源的运算电路下页上页时域形式:取拉氏变换返回i1+_u2i2_u1i1+R)(1sU)(1sI)(2sU)(1sI)(2sI+__+R3.RLC串联电路的运算形式下页上页时域电路0)0(0)0(Lciu若:0d1ddtCiuiRLittC)(1)()()(sIsCssLIRsIsU拉氏变换运算电路)()()1)((sZsIsCsLRsIsCsLRsYsZ1)(1)(运算阻抗返回u(t)RC-+iLU(
本文标题:电路-第五版邱关源第十四章PPT
链接地址:https://www.777doc.com/doc-6692522 .html