您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数-反比例函数系数k的几何意义
第1页(共39页)反比例函数-反比例函数系数k的几何意义一.选择题(共30小题)1.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值是()A.9B.6C.5D.42.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.123.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE的面积分别是1和2,则k的值为()A.B.+1C.D.2第2页(共39页)4.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=()A.2B.4C.6D.35.如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.186.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=图象上一点,AO的延长线交函数y=的图象交于点C,CB⊥x轴,若△ABC的面积等于6,则k的值是()A.B.2C.3D.47.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=﹣,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON第3页(共39页)的面积将会()A.逐渐增大B.始终不变C.逐渐减小D.先增后减8.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A.12B.13C.24D.269.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16B.20C.24D.2810.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,垂足为C,连接AC,若S△ABC=5,则k的值是()第4页(共39页)A.B.C.5D.1011.如图,A点在y=(x<0)的图象上,A点坐标为(﹣4,2),B是y=(x<0)的图象上的任意一点,以B为圆心,BO长为半径画弧交x轴于C点,则△BCO面积为()A.4B.6C.8D.1212.如图,点A是反比例函数y=图象上一点,AB垂直于x轴,垂足为点B,AC垂直于y轴,垂足为点C,若矩形ABOC的面积为5,则k的值为()A.5B.2.5C.D.1013.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为()第5页(共39页)A.8B.12C.16D.2014.如图,四边形OABC是矩形,四边形CDEF是正方形,点C,D在x轴的正半轴上,点A在y轴的正半轴上,点F在BC上,点B,E在反比例函数y=的图象上,OA=2,OC=1,则正方形CDEF的面积为()A.4B.1C.3D.215.如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1B.2C.4D.16.如图,点A是反比例函数y=(x>0)图象上一点,AB⊥x轴于点B,点C在x轴上,且OB=OC,若△ABC的面积等于6,则k的值等于()A.3B.6C.8D.1217.已知,A是反比例函数y=的图象上的一点,AB⊥x轴于点B,O是坐标原点,且△ABO的面积是3,则k的值是()A.3B.±3C.6D.±6第6页(共39页)18.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.819.如图,已知反比例函数y=的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为4+2,AD=2,则△ACO的面积为()A.B.C.1D.220.Rt△ABC在平面坐标系中摆放如图,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线经过CD点及AB的中点D,S△BCD=4,则k的值为()A.8B.﹣8C.﹣10D.1021.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()第7页(共39页)A.B.C.3D.422.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10B.11C.12D.1323.如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1•k2D.24.如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()第8页(共39页)A.2B.m﹣2C.mD.425.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S326.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1B.2C.3D.427.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()第9页(共39页)A.①②③B.②③④C.①③④D.①②④28.如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.1229.如图,已知双曲线y1=(x>0),y2=(x>0),点P为双曲线y2=上的一点,且PA⊥x轴于点A,PA,PO分别交双曲线y1=于B,C两点,则△PAC的面积为()A.1B.1.5C.2D.330.如图,已知矩形OABC的面积为25,它的对角线OB与双曲线y=(k>0)相交于点G,且OG:GB=3:2,则k的值为()A.15B.C.D.9第10页(共39页)反比例函数-反比例函数系数k的几何意义参考答案与试题解析一.选择题(共30小题)1.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=9.则k的值是()A.9B.6C.5D.4【分析】作AD⊥x轴于D,BE⊥x轴于E,设反比例函数解析式为y=(k>0),根据反比例函数图象上点的坐标特征得A、B两点的纵坐标分别是、,再证明△CEB∽△CDA,利用相似比得到===,则DE=CE,由OD:OE=a:2a=1:2,则OD=DE,所以OD=OC,根据三角形面积公式得到S△AOD=S△AOC=×9=3,然后利用反比例函数y=(k≠0)系数k的几何意义得|k|=3,易得k=6.【解答】解:作AD⊥x轴于D,BE⊥x轴于E,如图,设反比例函数解析式为y=(k>0),∵A、B两点的横坐标分别是a、2a,∴A、B两点的纵坐标分别是、,∵AD∥BE,∴△CEB∽△CDA,∴===,第11页(共39页)∴DE=CE,∵OD:OE=a:2a=1:2,∴OD=DE,∴OD=OC,∴S△AOD=S△AOC=×9=3,∴|k|=3,而k>0,∴k=6.故选B.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了三角形相似的判定与性质.2.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即第12页(共39页)可求出B的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选C.【点评】此题考查了反比例函数的综合知识,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.3.如图,矩形OABC的顶点A在y轴上,C在x轴上,双曲线y=与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE的面积分别是1和2,则k的值为()第13页(共39页)A.B.+1C.D.2【分析】设D(t,),由矩形OGHF的面积为1得到HF=,于是根据反比例函数图象上点的坐标特征可表示出E点坐标为(kt,),接着利用矩形面积公式得到(kt﹣t)•(﹣)=2,然后解关于k的方程即可得到满足条件的k的值.【解答】解:设D(t,),∵矩形OGHF的面积为1,DF⊥x轴于点F,∴HF=,而EG⊥y轴于点G,∴E点的纵坐标为,当y=时,=,解得x=kt,∴E(kt,),∵矩形HDBE的面积为2,∴(kt﹣t)•(﹣)=2,整理得(k﹣1)2=2,而k>0,∴k=+1.故选B.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.第14页(共39页)4.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=()A.2B.4C.6D.3【分析】由直角边AC的中点是D,S△AOC=3,于是得到S△CDO=S△AOC=,由于反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,即可得到结论.【解答】解:∵直角边AC的中点是D,S△AOC=3,∴S△CDO=S△AOC=,∵反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,∴k=2S△CDO=3,故选D.【点评】本题考查了反比例函数系数k的几何意义,求得D点的坐标是解题的关键.5.如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.18【分析】由PB∥OC可得出△PBQ∽△COQ,结合三角形面积比等于相似比的平第15页(共39页)方可得出PB=PA=OC,结合正方形OABC的边长为6可得出点C、点P的坐标,利用待定系数法即可求出直线CP的函数解析式,联立直线OB与直线CP的函数解析式即可得出点Q的坐标,利用待定系数法即可求出k值.【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=
本文标题:反比例函数-反比例函数系数k的几何意义
链接地址:https://www.777doc.com/doc-6698742 .html