您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版八年级上册数学三角形测试题-(解析版)
2019年秋人教版八年级上册数学《第11章三角形》单元测试题一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.62.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部4.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、105.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A.30°B.40°C.45°D.50°8.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形9.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.910.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于度,若∠A=60°时,∠BOC又等于14.如图,∠1,∠2,∠3的大小关系是.15.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.16.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为.17.如图,D是△ABC的边AC上一点,E是BD上一点,连接EC,若∠A=60°,∠ABD=25°,∠DCE=35°,则∠BEC的度数为.18.如图:∠B=∠C,DE⊥BC于E,EF⊥AB于F,∠ADE等于140°,∠FED=.三.解答题(共8小题)19.一根长1m的木尺,共有9个等分点,每个分点处有折痕,可将木尺折断,现欲将木尺折成3节,并使3节能组成三角形,若要组成形状不同的三角形,共有多少种不同的折法?20.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.21.如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD=10°,求∠B的度数22.如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.23.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.24.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.25.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.26.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.2018年秋人教版八年级上册数学《第11章三角形》单元测试题参考答案与试题解析一.选择题(共10小题)1.课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.6【分析】根据三角形的个数解答即可.【解答】解:图中三角形的个数是5个,故选:C.【点评】此题考查三角形,关键是根据图中图形得出三角形个数.2.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个【分析】根据三角形的高的定义以及平行线的性质,即可解答.【解答】解:∵BD是△ABC的高,∴∠ADB=∠CDB=90°,∵EF∥AC,∴∠EGB=∠ADB=90°,∴BG是△EBF的高,①正确;∵∠CDB=90°,∴CD是△BGC的高,②正确;∵∠ADG=∠CDG=90°,∴DG是△AGC的高,③正确;∵∠ADB=90°,∴AD是△ABG的高,④正确.故选:D.【点评】本题考查了三角形的高的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,理解定义是关键.也考查了平行线的性质.3.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部【分析】依据三角形角平分线、中线以及高线的概念,即可得到正确结论.【解答】解:A.三角形的三条中线交于一点,正确;B.锐角三角形的三条高都在三角形内部,错误;C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.【点评】本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.4.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、10【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解:A、3+4<8,不能构成三角形,故此选项不合题意;B、3+2<6,不能构成三角形,故此选项不合题意;C、5+6=11,不能构成三角形,故此选项不合题意;D、5+6>10,能构成三角形,故此选项符合题意.故选:D.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°【分析】根据三角形内角和定理即可解决问题;【解答】解:∵∠A+∠B+∠C=180°,∠A=60°,∠B=75°,∴∠C=45°,故选:C.【点评】本题考查三角形内角和定理,记住三角形内角和等于180°是解题的关键.6.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.7.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是()A.30°B.40°C.45°D.50°【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故选:B.【点评】本题属于基础题,利用直角三角形两锐角互余的性质解决问题.8.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答】解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.【点评】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.9.如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.10.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m即可.【解答】解:∵每次小明都是沿直线前进10米后向左转36°,∴他走过的图形是正多边形,边数n=360°÷36°=10,∴他第一次回到出发点A时,一共走了10×10=100米.故选:A.【点评】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.二.填空题(共8小题)11.三角形有两条边的长度分别是5和7,则最长边a的取值范围是7<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【解答】解:根据三角形三边关系定理知:最长边a的取值范围是:7<a<(7+5),即7<a<12.故答案为:7<a<12.【点评】此题主要考查的是三角形的三边关系,即:两边之和大于第三边,两边之差小于第三边.12.如图,H若是△ABC三条高AD,BE,CF的交点,则△BHA中边BH上的高是AE.【分析】直接利用三角形高线的定义得出答案.【解答】解:如图所示:∵H是△ABC三条高AD,BE,CF的交点,∴△BHA中边BH上的高是:AE.故答案为:AE.【点评】此题主要考查了三角形的高,正确钝角三角形高线的作法是解题关键.13.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于84度,若∠A=60°时,∠BOC又等于120°【分析】根据三角形内角和定理易得∠OBC+∠OCB=48°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,进而利用三角形内角和定理可得∠A度数;【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°﹣96°=84°;解:∵∠A=60°∴∠ABC+∠ACB=120°∴∠BOC=180°﹣(∠ABC+∠ACB)=120°.故答案为:84,120°.【点评】本题考查的是三角形内角和定理,角平分线的定义,熟知三角形内角和是180°是解答此题的关键.14.如图,∠1,∠2,∠3的大小关系是∠1<∠2<∠3.【分析】如图可知∠2是三角形的外角,∠3是三角形的外角,根据外角的性质可得到∠1,∠2,∠3的大小关系.【解答】解:∵∠2是外角,∠1是内角,∴∠1<∠2,∵∠3是外角,∠2是内角,∴∠2<∠3,∴∠1<∠2<∠3,故答案为:∠1<∠2<∠3
本文标题:人教版八年级上册数学三角形测试题-(解析版)
链接地址:https://www.777doc.com/doc-6709485 .html