您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 1.2充分条件必要条件和充要条件说课稿
岳阳市外国语学校高中数学选修2-1说课稿说课人:鲁辉第1页共4页1.2充分条件、必要条件与充要条件说课稿一、教材分析充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为数学推理的学习打下基础。教学大纲把教学目标定位在“掌握充要条件的意义”。教科书结合“若p则q”形式的命题给出了充分条件和必要条件的概念,并引入推断符号“”从学生学习的角度看,学生对于充分条件和必要条件的理解,需要一定时间的体会,为帮助学生理解概念,教学中要适当举一些数学命题的例子结合具体的数学命题来学习。数学上的充分条件和必要条件,与日常生活中的“充分”“必要”的意义很相近,教学中可以适当借助日常生活中“充分条件”“必要条件”的例子,帮助学生理解充分条件和必要条件。教材的编写者在数学概念的处理上贯彻了“淡化形式,注重实质”这一新的教学观。当然,一次性给出定义也增加了学生理解上的困难,也是教学中必须突破的难点。基于上述理解,我对本节内容的教学目标和重难点作如下考虑:二、教学目标1、知识与技能:理解充分条件、必要条件、充要条件这三个概念,掌握判断充要条件的方法与步骤。2、过程与方法:通过对充分条件、必要条件、充要条件的概念的感知、形成、理解和深化运用,培养学生分析、判断和归纳的逻辑思维能力。3、情感、态度与价值观:培养学生的辨析能力以及培养他们的思维的严谨性,在练习过程中进行辨证唯物主义思想教育。三、教学重点与难点教学重点:充分条件、必要条件、充要条件的概念的理解,判断给定命题的条件与结论之间的关系。教学难点:在pq中,q是p的必要条件的理解;如何判断p是q的什么条件。四、教学方法与学法采用探究式教学法。整个教学过程中体现“分析”—“探究”—“总结”的学习环节,从三个方面引发学生的学习思维活动:1、通过问题情境的创设,学生通过对具体命题的正反辨析,对“充分的”和“必要的”这两个词汇产生感性化的认识。2、学生通过解题实践,总结判定方法,形成辨别充要条件的初步能力。3、学生探究生活中的充要关系,把学习延岳阳市外国语学校高中数学选修2-1说课稿说课人:鲁辉第2页共4页伸到课外,体验“在生活中数学地思维”。五、教学程序1.情景引入:(2分钟)姚明大家都认识,他说过很多很经典的话,其中有一句给我留下来了很深刻的印象,他说:“努力不一定成功,但放弃一定失败。”话语中有两组关键词:“努力”和“成功”;“放弃”和“失败”。每组中的两个词之间有什么样的逻辑关系?我们今天所学的内容就可以解决这个问题。目的:通过实际生活中姚明讲过一句话,引起学生的思考,对于数学逻辑学习的兴趣。2.给出定义(微课4分钟)一般地,“若p,则q”为真命题,是指由p通过推理可以得出q。这时,我们就说,由p可推出q,记作:pq,并且说p是q的充分条件,q是p必要条件。一般地,如果既有pq,又有qp,就记作:pq。此时,我们说,p是q的充分必要条件,简称充要条件。显然,如果p是q的充要条件,那么q也是p的充要条件。概括地说,如果pq,那么p与q互为充要条件。目的:以实际的例子:学生是班级的学生就是这个学校的学生,反过来是这个学校的学生不一定是这个班级的学生,进一步阐述充分条件、必要条件、充要条件的定义,特别是难点:必要条件的概念。3.例题解析:(15分钟)例1、下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?⑴、若1x或3x,则2430xx;⑵、若fxx,则fx为增函数;⑶、若x为无理数,则2x为无理数。解析:命题⑴⑵是真命题,命题⑶是假命题。所以命题⑴⑵中的p是q的充分条件。例2、下列“若p,则q”形式的命题中,哪些命题中的q是p的必要条件?⑴、若xy,则22xy;⑵、若两个三角形全等,则这两个三角形的面积相等;⑶、若ab,则acbc。目的:引导理解概念:1、教师在对学生的回答作出纠正和完善后,可以自然引出充分岳阳市外国语学校高中数学选修2-1说课稿说课人:鲁辉第3页共4页不必要、必要不充分、充分必要和既不充分也不必要条件的概念(板书),使学生认识趋于完善。2、注意引导学生观察答案的特点:当条件与结论位置对换的时候,条件的类型也相应的发生着变化。4.习题精练(8分钟)练习1、在下列各题中,p是q的什么条件?⑴、在空间中,p:两条直线没有公共点,q:这两条直线是异面直线。⑵、,ARBR,p:sinsinAB,q:AB。练习2、设na是等差数列,则“12aa”是“数列na是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件练习3、“12x”是“2x”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件目的:通过四个习题的练习,让学生认识到,区分条件和结论是准确判断充分、必要条件的重要前提。分析其中的关系,作出判断。注意规范学生的思维过程,并在此基础上引导学生总结出判断充要关系的基本方法步骤:①、认清“条件”和“结论”;②、判断“条件结论”和“结论条件”的真假;③、根据推导的结果和定义下结论。(板书步骤)5、拓展延伸(5分钟)练习4、已知A,Bxxpxxq满足条件满足条件,⑴、如果AB,那么p是q的什么条件;⑵、如果BA,那么p是q的什么条件;⑶、如果AB,那么p是q的什么条件。目的:通过本题的解答,引导学生认识到,判断充要条件,除了从概念的角度去理解之外,还可以从集合的角度去理解,利用集合之间的包含关系加以判断,要尽可能的用图示法、数轴等几何方法,直观的简化了解题难度,体现数形结合的思想。6、高考链接:(5分钟)1、(2015年湖南卷(理)T2)设A、B是两个集合,则“ABA”是“AB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件岳阳市外国语学校高中数学选修2-1说课稿说课人:鲁辉第4页共4页2、(2015年湖南卷(文)T3)设xR,则“1x”是“31x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件目的:通过高考题目的给出,让学生感知高考中本节内容地位、难度、出题方式等。7、课堂小结(4分钟):本节课我们学习了充分条件、必要条件、充要条件这三个定义;分清了p是q什么条件的四种情况;掌握了判断充要条件的三个步骤;并且分别从概念的角度和集合的角度去理解了充要条件的判断。8、作业布置(1分钟):教材P12习题1.2A组T2T39、教学设计反思。
本文标题:1.2充分条件必要条件和充要条件说课稿
链接地址:https://www.777doc.com/doc-6710155 .html