您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【恒心】高考数学(文科)传奇逆袭001-集合与常用逻辑用语
1第一章集合与常用逻辑用语第一节集__合1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示法:列举法、描述法、Venn图.2.集合间的基本关系描述关系文字语言符号语言集合间的基本关系子集A中任意一元素均为B中的元素A⊆B或B⊇A真子集A中任意一元素均为B中的元素,且B中至少有一个元素A中没有AB或BA相等集合A与集合B中的所有元素都相同A=B3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A的补集为∁UA图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系;以及集合与集合的包含关系.23.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[试一试]1.(2013·辽宁高考)已知集合A={x|0log4x1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]答案:D2.i是虚数单位,若集合S={-i,0,i},则()A.i2∈SB.i2010∈SC.i2012∈SD.i2013∈S解析:选Di2=-1∉S;i2010=i2=-1∉S,i2012=i4=1∉S,i2013=i∈S,故选D项.3.已知集合A={x|y=x2},B={(x,y)|y=x},则A∩B=________.答案:∅1.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图.2.解决集合的综合运算的方法解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解.3.数形结合思想数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.[练一练]1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D3答案:B2.(2014·安徽省“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x∈A)的值域为B,则(∁RA)∩B=()A.(1,2]B.[1,2]C.[0,1]D.(1,+∞)解析:选A由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁RA={x|x0或x1},∴(∁RA)∩B=(1,2].考点一集合的基本概念1.(2013·山东高考)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9解析:选C逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.2.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2013=________.解析:由M=N知n=1,log2n=m或n=m,log2n=1,∴m=0,n=1或m=2,n=2.答案:-1或03.已知集合A={m+2,2m2+m},若3∈A,则m的值为________.解析:因为3∈A,所以m+2=3或2m2+m=3.当m+2=3,即m=1时,2m2+m=3,此时集合A中有重复元素3,所以m=1不符合题意,舍去;当2m2+m=3时,解得m=-32或m=1(舍去),此时当m=-32时,m+2=12≠3符合题意.4所以m=-32.答案:-32[类题通法]1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二集合间的基本关系[典例](1)(2013·洛阳统考)已知集合A={x|x-2x≤0,x∈N},B={x|x≤2,x∈Z},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.4D.8(2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.[解析](1)由x-2x≤0得0x≤2,因此A={1,2};由x≤2得0≤x≤4,因此B={0,1,2,3,4},满足条件A⊆C⊆B的集合C的个数是23=8.(2)由log2x≤2,得0x≤4,即A={x|0x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a4,即c=4.[答案](1)D(2)4[类题通法]1.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析.2.当题目中有条件B⊆A时,不要忽略B=∅的情况.[针对训练]1.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A因为A={1,a},B={1,2,3},若a=3,则A={1,3},所以A⊆B;若A⊆5B,则a=2或a=3,所以A⊆B⇒/a=3,所以“a=3”是“A⊆B”的充分而不必要条件.2.已知集合A={x|-3≤x≤4},B={x|2m-1xm+1},且B⊆A.则实数m的取值范围为________.解析:∵B⊆A,(1)当B=∅时,m+1≤2m-1,解得m≥2.(2)当B≠∅时,有-3≤2m-1,m+1≤4,2m-1m+1,解得-1≤m2,综上得m≥-1.答案:[-1,+∞)考点三集合的基本运算[典例](1)(2013·山东高考)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁UB=()A.{3}B.{4}C.{3,4}D.∅(2)(2014·武汉市武昌区联考)已知全集U=R,集合A={x|lg(x+1)≤0},B={x|3x≤1},则∁U(A∩B)=()A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(-∞,-1]∪(0,+∞)D.(-1,+∞)[解析](1)∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁UB={3,4},∴A∩∁UB={3}.(2)lg(x+1)≤0⇒0x+1≤1⇒-1x≤0,3x≤1⇒x≤0,则A∩B=(-1,0],∁U(A∩B)=(-∞,-1]∪(0,+∞).[答案](1)A(2)C[类题通法]集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.6[针对训练]设全集U是自然数集N,集合A={x|x24,x∈N},B={0,2,3},则图中阴影部分所表示的集合是()A.{x|x2,x∈N}B.{x|x≤2,x∈N}C.{0,2}D.{1,2}解析:选C由图可知,图中阴影部分所表示的集合是B∩(∁UA),∁UA={x|x2≤4,x∈N}={x|-2≤x≤2,x∈N}={0,1,2},∵B={0,2,3},∴B∩(∁UA)={0,2},选C.考点四集合中的创新问题角度一创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.1.若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31解析:选B具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},12,2,-1,12,2.角度二创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.归纳起来常见的命题角度有:1创新集合新定义;2创新集合新运算;3创新集合新性质.72.如图所示的Venn图中,A,B是非空集合,定义集合AB为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x0},则AB为()A.{x|0x2}B.{x|1x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x2}解析:选D因为A={x|0≤x≤2},B={y|y1},A∪B={x|x≥0},A∩B={x|1x≤2},所以AB=∁A∪B(A∩B)={x|0≤x≤1或x2},故选D.角度三创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.3.对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy∈S”,则当a=1,b2=1,c2=b时,b+c+d等于()A.1B.-1C.0D.i解析:选B∵S={a,b,c,d},由集合中元素的互异性可知当a=1时,b=-1,c2=-1,∴c=±i,由“对任意x,y∈S,必有xy∈S”知±i∈S,∴c=i,d=-i或c=-i,d=i,∴b+c+d=(-1)+0=-1.[类题通法]解决新定义问题应注意的问题(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质;(2)按新定义的要求,“照章办事”逐步分析、验证、运算,使问题得以解决;(3)对于选择题,可以结合选项通过验证,排除、对比、特值等方法解决.[课堂练通考点]1.(2013·江西高考)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4B.2C.0D.0或4解析:选A由ax2+ax+1=0只有一个实数解,可得当a=0时,方程无实数解;当a≠0时,则Δ=a2-4a=0,解得a=4(a=0不合题意舍去).2.(2013·全国卷Ⅰ)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()8A.{1,4}B.{2,3}C.{9,16}D.{1,2}解析:选An=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.3.(2014·北京东城区统一检测)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1B.3C.4D.8解析:选C根据已知,满足条件的集合B为{3},{1,3},{2,3},{1,2,3}.故选C.4.创新题设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列
本文标题:【恒心】高考数学(文科)传奇逆袭001-集合与常用逻辑用语
链接地址:https://www.777doc.com/doc-6715858 .html