您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 沪教版中考复习:一模复习之平面向量与相似三角形
1/18在九年级数学上学期第一章中,我们学习了相似三角形和平面向量的线性运算两个方面的内容,这两部分的知识点是一模考中的重点部分,除去填空题和选择题,在大部分区县的解答题中,相关分值大约在20分~30分,题型分布为1题关于向量的,1-2题关于相似三角形,位于解答题19题~23题之间,也是同学们必须要取得满分的题目.我们整理了近两年解答题中的相关题目,希望同学们勤加练习.平面向量主要考察向量加法、实数与向量相乘的有关规律,以及向量的线性运算和化简.难点是向量的线性表示.平面向量与相似三角形内容分析知识结构模块一:平面向量考点分析2/18ABCDEOGABCDEO【例1】(2015学年·杨浦区一模·第19题)如图,已知两个不平行的向量a、b.先化简,再求作:13(3)()22abab.(不要求写作法,但要指出所作图中表示结论的向量)【难度】★★【答案】【解析】【例2】(2015学年·闸北区一模·第21题)如图,已知平行四边形ABCD的对角线相交于点O,点E是边BC的中点,联结DE交AC于点G.设AD=a,DC=b.(1)试用a、b表示向量OC;(2)试用a、b表示向量DG.【难度】★★【答案】【解析】【例3】(2014学年·长宁区一模·第20题)如图,已知O为ABC内的一点,点D、E分别在边AB、AC上,且13ADDB,14AEAC.设OBm,OCn,试用m,n表示DE.【难度】★★【答案】【解析】例题解析3/18ABCDEABCDMABCDEF【例4】(2015学年·徐汇区一模·第21题)如图,在ABC中,点D、E分别在边AB、AC上,34ADAB,3AE,1CE,6BC.(1)求DE的长;(2)过点D作DF//AC交BC于F,设ABa,BC=b,求向量DF(用向量a、b表示).【难度】★★【答案】【解析】【例5】(2015学年·普陀区一模·第19题)已知:如图,在梯形ABCD中,AD//BC,13ADBC,点M是边BC的中点,ADa,bAB.(1)填空:BM,MA.(结果用a、b表示)(2)直接在图中画出向量2ab.(不要求写作法,但要指出图中表示结论的向量)【难度】★★【答案】【解析】【例6】(2015学年·崇明县一模·第20题)已知:如图,□ABCD中,E是AD中点,BE交AC于点F,设BAa、BCb.(1)用a,b的线性组合表示FA;(2)先化简,再直接在图中求作该向量:1151()()()2424ababab.【难度】★★【答案】【解析】4/18ABCDEABCDEABCDPQR【例7】(2014学年·奉贤区一模·第21题)如图,在ABC中,AB=AC=12,DC=4,过点C作CE//AB交BD的延长线于点E,ABa,BCb.(1)求BE;(用向量a、b的式子表示)(2)求作向量12BDAC.(不要求写作法,但要指出所作图中表示结论的向量)【难度】★★【答案】【解析】【例8】(2014学年·浦东新区、杨浦区、闵行区、松江区、静安区、青浦区一模·第20题)如图,已知在ABC中,AD是边BC上的中线.设BAa,BCb.(1)求AD(用向量a、b的式子表示);(2)如果点E在中线AD上,求作BE在BA、BC方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)【难度】★★【答案】【解析】【例9】(2015学年·闵行区一模·第21题)如图,已知四边形ABCD中,点P、Q、R分别是对角线AC、BD和边AB的中点,设BCa,ADb.(1)试用a、b的线性组合表示向量PQ;(需写出必要的说理过程)(2)画出向量PQ分别在a、b方向上的分向量.【难度】★★【答案】【解析】5/18ABCDEFGABCDENM相似三角形主要考察平行线分线段成比例定理、相似三角形的判定和性质,以及其综合应用.难点是灵活运用相关定理解决有关问题.【例10】(2015学年·浦东新区一模·第21题)如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.(1)若2FD,13EDBC,求线段DC的长;(2)求证:EFGBBFGE.【难度】★★【答案】【解析】【例11】(2014学年·徐汇区一模·第22题)如图,MN经过ABC的顶点A,MN//BC,AM=AN,MC交AB于D,NB交AC于E.(1)求证:DE//BC;(2)联结DE,如果DE=1,BC=3,求MN的长.【难度】★★【答案】【解析】模块二:相似三角形例题解析考点分析6/18ABCDEFABCDEFGHDABCEFG12【例12】(2014学年·虹口区一模·第21题)如图,在ABC中,点D在边AC上,AE分别交线段BD、边BC于点F、G,12,AFDFEFBF.求证:2BFFGEF.【难度】★★【答案】【解析】【例13】(2015学年·崇明县一模·第21题)如图,已知AD//BE//CF,它们依次交直线l1,l2于点A、B、C和点D、E、F,25DEEF,14AC.(1)求AB、BC的长;(2)如果7AD,14CF,求BE的长.【难度】★★【答案】【解析】【例14】(2015学年·虹口区一模·第21题)如图,DC//EF//GH//AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.【难度】★★【答案】【解析】7/18ABCPABCPABCDEFGNABCDEFG【例15】(2015学年·嘉定区一模·第20题)如图,已知ABC中,ABAC,6BC,BC边上的高4AN,直角梯形DEFG的底EF在BC边上,4EF,点D、G分别在边AB、AC上,且DG//EF,GFEF,垂足为F,设GF的长为x,直角梯形DEFG的面积为y,求y关于x的函数解析式,并写出函数的定义域.【难度】★★【答案】【解析】【例16】(2015学年·普陀区一模·第22题)如图,已知有一块面积等于12002cm的三角形铁片ABC,已知底边BC与底边上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形铁片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.【难度】★★【答案】【解析】【例17】(2014学年·金山区一模·第20题)如图,ABC中,PC平分ACB,PBPC.(1)求证:APC∽ACB;(2)若2AP,6PC,求AC的长.【难度】★★【答案】【解析】【例18】(2015学年·长宁区、金山区一模·第21题)已知ABC中,60CAB,P为ABC内一点且120APBAPC,求证:2APBPCP.【难度】★★【答案】【解析】8/18ABCDEABCDEABCDEABCDEF【例19】(2015学年·奉贤区一模·第23题)已知:在梯形ABCD中,AD//BC,ABBC,AEBADC.(1)求证:ADE∽DBC;(2)联结EC,若2CDADBC,求证:DCEADB.【难度】★★【答案】【解析】【例20】(2015学年·普陀区一模·第23题)已知:如图,在四边形ABCD中,ADBACB,延长AD、BC相交于点E,求证:(1)ACE∽BDE;(2)BEDCABDE.【难度】★★【答案】【解析】【例21】(2015学年·虹口区一模·第23题)如图,点E是四边形ABCD的对角线BD上的一点,BAECBDDAC.(1)求证:DEABBCAE;(2)求证:180AEDADC.【难度】★★【答案】【解析】【例22】(2015学年·徐汇区一模·第23题)如图,在ACB中,ACBC,点D在边AC上,ABBD,BEED,且CBEABD,DE与CB交于点F.求证:(1)2BDADBE;(2)CDBFBCDF.【难度】★★【答案】【解析】9/18ABCDEFABCDEFGABCDEF【例23】(2015学年·静安区一模·第23题)已知:如图,在ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,2AEEFEC.(1)求证:ADCDCEEAF;(2)求证:AFADABEF.【难度】★★【答案】【解析】【例24】(2014学年·浦东新区、杨浦区、闵行区、松江区、静安区、青浦区一模·第23题)已知:如图,D是ABC的边AB上一点,DE//BC,交边AC于点E,延长DE到点F,使得EF=DE,联结BF,交边AC于点G,联结CF.(1)求证:AEEGACCG;(2)如果2CFFGFB,求证:CGCEBCDE.【难度】★★【答案】【解析】【例25】(2014学年·普陀区一模·第23题)如图,已知在ABC中,90ACB,点D在边BC上,CEAB,CFAD,E、F分别是垂足.(1)求证:2ACAFAD;(2)联结EF,求证:AEDBADEF.【难度】★★【答案】【解析】10/18ABCDEFGABCDEFABCD【例26】(2014学年·徐汇区一模·第23题)已知菱形ABCD中,AB=8,点G是对角线BD上一点,CG交BA的延长线于点F.(1)求证:2AGGEGF;(2)如果12DGGB,且AGBF,求cosF.【难度】★★【答案】【解析】【例27】(2014学年·闸北区一模·第23题)如图,已知等腰梯形ABCD中,AD//BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,BAEDBC.(1)求证:ABE∽BCD;(2)求tanDBC的值;(3)求线段BF的长.【难度】★★【答案】【解析】【例28】(2015学年·宝山区一模·第23题)如图,D为ABC边AB上一点,且CD分ABC为两个相似比为1:3的一对相似三角形.(不妨如图假设左小右大)求:(1)BCD与ACD的面积比;(2)ABC的各内角度数.【难度】★★【答案】【解析】11/18ABCEFGABCDEFGH【例29】(2014学年·虹口区一模·第23题)如图,在RtCAB与RtCEF中,90ACBFCE,CABCFE,AC与EF相交于点G,BC=15,AC=20.(1)求证:CEFCAF;(2)若AE=7,求AF的长.【难度】★★【答案】【解析】【例30】(2014学年·宝山区一模·第24题)如图,正方形ABCD中,(1)E为边BC的中点,AE的垂直平分线分别交AB、AE、CD于G、F、H,求GFFH的值;(2)E的位置改为边BC上一动点,且BEkEC,其它条件不变,求GFFH的值.【难度】★★【答案】【解析】12/18ABCDENMABCDO【习题1】(2014学年·宝山区一模·第20题)如图已知M、N分别是平行四边形ABCD边DC、BC的中点,射线AM和射线BC相交于E,设ABa,ADb,试用a,b表示AN,AE.【难度】★★【答案】【解析】【习题2】(2014学年·黄浦区一模·第19题)如图,已知两个不平行的向量a、b.(1)化简:23abab;(2)求作c,使得12cba.(不要求写作法,但要指出所作图中表示结论的向量)【难度】★★【答案】【解析】【习题3】(2014学年·普陀区一模·第20题)如图,已知AB//CD,AD与BC相交于点O,且23ABCD.(1)求AOAD的值;(2)如果AOa,请用a表示DA.【难度】★★【答案】【解析】随堂检测13/18ABCDEFABCDEFABCDEFABCDEFGPQ【习题4】(2015学年·崇明县一模·第20题)已知,□ABCD中,点E在DC边上,且3DEEC,AC与BE交于点F.(1)如果ABa,ADb,那么请用a,b来表示AF;(2)在原图中求作向量AF在AB、AD方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【难度】★★【答案】【解析】【习题5】(2015学年·杨浦
本文标题:沪教版中考复习:一模复习之平面向量与相似三角形
链接地址:https://www.777doc.com/doc-6718885 .html