您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考集合知识点总结及典型例题
集合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);AaAbBA集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作AB;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,=称S中子集A的补集;(3)简单性质:1)()=A;2)S=,=S4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。5.集合的简单性质:(1)(2)(3)(4);(5)(A∩B)=(A)∪(B),(A∪B)=(A)∩(B)。四.【典例解析】题型1:集合的概念(2009湖南卷理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__例1.已知全集,集合和的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有()A.3个B.2个SC}|{AxSxx且SCSCSCSC}|{BxAxxBA且}|{BxAxxBA或并集;,,ABBAAAAA;,ABBAAA);()(BABABBABAABABA;SCSCSCSCSCSCUR{212}Mxx{21,1,2,}NxxkkC.1个D.无穷多个解析由得,则,有2个,选B.例2.集合,,若,则的值为()A.0B.1C.2D.4题型2:集合的性质例3.集合,,若,则的值为()A.0B.1C.2D.41.设全集U=R,A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则下图中阴影表示的集合为()A.{2}B.{3}C.{-3,2}D.{-2,3}2.已知集合A={y|y2-(a2+a+1)y+a(a2+1)0},B={y|y2-6y+8≤0},若A∩B≠φ,则实数a的取值范围为().例4.已知全集,A={1,}如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由题型3:集合的运算例5已知函数的定义域集合是A,函数的定义域集合是B(1)求集合A、B(2)若AB=B,求实数的取值范围.例6.已知集合,则()A.B.C.D.题型4:图解法解集合问题{212}Mxx31x3,1NM0,2,Aa21,Ba0,1,2,4,16ABa0,2,Aa21,Ba0,1,2,4,16ABa32{1,3,2}Sxxx21x}0{ACSxx1()2xfxx22()lg[(21)]gxxaxaaa1,3,5,7,9,0,3,6,9,12ABNACBI1,5,73,5,71,3,91,2,3例7.(2009年广西北海九中训练)已知集合M=,N=,则()A.B.C.D.五.【思维总结】集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。1.学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号,如、、、、=、A、∪,∩等等;2.强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn图解题方法的训练,加强两种集合表示方法转换和化简训练;解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“Venn图”来加深对集合的理解,一个集合能化简(或求解),一般应考虑先化简(或求解);3.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。①区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2};②AB时,A有两种情况:A=φ与A≠φ③若集合A中有n个元素,则集合A的所有不同的子集个数为,所有真子集的个数是-1,所有非空真子集的个数是④区分集合中元素的形式:如;;;;;;。⑤空集是指不含任何元素的集合。、和的区别;0与三者间的关系。空集是任何集合的子集,是任何非空集合的真子集。条件为,在讨论的时候不要遗忘了的情况。149|22yxx123|yxyNM)}0,2(),0,3{(3,32,3SC)(Nnn2n222n}12|{2xxyxA}12|{2xxyyB}12|),{(2xxyyxC}12|{2xxxxD},,12|),{(2ZyZxxxyyxE}12|)',{(2xxyyxF},12|{2xyzxxyzG}0{}{BAA⑥符号“”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;符号“”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。逻辑是研究思维形式及其规律的一门学科,是人们认识和研究问题不可缺少的工具,是为了培养学生的推理技能,发展学生的思维能力,,Ø
本文标题:高考集合知识点总结及典型例题
链接地址:https://www.777doc.com/doc-6726746 .html