您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019年全国一卷理科数学高考试卷真题及答案(附Word版下载)
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合242{60{}MxxNxxx,,则MN=A.{43xxB.42{xxC.{22xxD.{23xx2.设复数z满足=1iz,z在复平面内对应的点为(x,y),则A.22+11()xyB.221(1)xyC.22(1)1yxD.22(+1)1yx3.已知0.20.32 log0.220.2abc,,,则A.abcB.acbC.cabD.bca4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512(512≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165cmB.175cmC.185cmD.190cm5.函数f(x)=2sincosxxxx在[,]的图像大致为A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足||2||ab,且()abb,则a与b的夹角为A.π6B.π3C.2π3D.5π68.如图是求112122的程序框图,图中空白框中应填入A.A=12AB.A=12AC.A=112AD.A=112A9.记nS为等差数列{}na的前n项和.已知4505Sa,,则A.25nanB. 310nanC.228nSnnD.2122nSnn10.已知椭圆C的焦点为121,01,0FF(),(),过F2的直线与C交于A,B两点.若22||2||AFFB,1||||ABBF,则C的方程为A.2212xyB.22132xyC.22143xyD.22154xy11.关于函数()sin|||sin|fxxx有下述四个结论:①f(x)是偶函数②f(x)在区间(2,)单调递增③f(x)在[,]有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.68B.64C.62D.6二、填空题:本题共4小题,每小题5分,共20分。13.曲线23()exyxx在点(0)0,处的切线方程为____________.14.记Sn为等比数列{an}的前n项和.若214613aaa,,则S5=____________.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.16.已知双曲线C:22221(0,0)xyabab的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若1FAAB,120FBFB,则C的离心率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)ABC△的内角A,B,C的对边分别为a,b,c,设22(sinsin)sinsinsinBCABC.(1)求A;(2)若22abc,求sinC.18.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3APPB,求|AB|.20.(12分)已知函数()sinln(1)fxxx,()fx为()fx的导数.证明:(1)()fx在区间(1,)2存在唯一极大值点;(2)()fx有且仅有2个零点.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)ipi表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p,81p,11iiiipapbpcp(1,2,,7)i,其中(1)aPX,(0)bPX,(1)cPX.假设0.5,0.8.(i)证明:1{}iipp(0,1,2,,7)i为等比数列;(ii)求4p,并根据4p的值解释这种试验方案的合理性.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt,(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos3sin110.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.[选修4—5:不等式选讲](10分)已知a,b,c为正数,且满足abc=1.证明:(1)222111abcabc;(2)333()()()24abbcca.2019年普通高等学校招生全国统一考试理科数学•参考答案一、选择题1.C2.C3.B4.B5.D6.A7.B8.A9.A10.B11.C12.D二、填空题13.y=3x14.121315.0.1816.2三、解答题17.解:(1)由已知得222sinsinsinsinsinBCABC,故由正弦定理得222bcabc.由余弦定理得2221cos22bcaAbc.因为0180A,所以60A.(2)由(1)知120BC,由题设及正弦定理得2sinsin1202sinACC,即631cossin2sin222CCC,可得2cos602C.由于0120C,所以2sin602C,故sinsin6060CCsin60cos60cos60sin60CC624.18.解:(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1CA1D,故MEND,因此四边形MNDE为平行四边形,MN∥ED.又MN平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A,A1(2,0,4),(1,3,2)M,(1,0,2)N,1(0,0,4)AA,1(1,3,2)AM,1(1,0,2)AN,(0,3,0)MN.设(,,)xyzm为平面A1MA的法向量,则1100AMAAmm,所以32040xyzz,.可取(3,1,0)m.设(,,)pqrn为平面A1MN的法向量,则100MNAN,.nn所以3020qpr,.可取(2,0,1)n.于是2315cos,||525‖mnmnmn,所以二面角1AMAN的正弦值为105.19.解:设直线11223:,,,,2lyxtAxyBxy.(1)由题设得3,04F,故123||||2AFBFxx,由题设可得1252xx.由2323yxtyx,可得22912(1)40xtxt,则1212(1)9txx.从而12(1)592t,得78t.所以l的方程为3728yx.(2)由3APPB可得123yy.由2323yxtyx,可得2220yyt.所以122yy.从而2232yy,故211,3yy.代入C的方程得1213,3xx.故413||3AB.20.解:(1)设()()gxf'x,则1()cos1gxxx,21sin())(1x'xgx.当1,2x时,()g'x单调递减,而(0)0,()02g'g',可得()g'x在1,2有唯一零点,设为.则当(1,)x时,()0g'x;当,2x时,()0g'x.所以()gx在(1,)单调递增,在,2单调递减,故()gx在1,2存在唯一极大值点,即()f'x在1,2存在唯一极大值点.(2)()fx的定义域为(1,).(i)当(1,0]x时,由(1)知,()f'x在(1,0)单调递增,而(0)0f',所以当(1,0)x时,()0f'x,故()fx在(1,0)单调递减,又(0)=0f,从而0x是()fx在(1,0]的唯一零点.(ii)当0,2x时,由(1)知,()f'x在(0,)单调递增,在,2单调递减,而(0)=0f',02f',所以存在,2,使得()0f',且当(0,)x时,()0f'x;当,2x时,()0f'x.故()fx在(0,)单调递增,在,2单调递减.又(0)=0f,1ln1022f,所以当0,2x时,()0fx.从而,()fx在0,2没有零点.(iii)当,2x时,()0f'x,所以()fx在,2单调递减.而02f,()0f,所以()fx在,2有唯一零点.(iv)当(,)x时,ln(1)1x,所以()fx0,从而()fx在(,)没有零点.综上,()fx有且仅有2个零点.2
本文标题:2019年全国一卷理科数学高考试卷真题及答案(附Word版下载)
链接地址:https://www.777doc.com/doc-6734266 .html