您好,欢迎访问三七文档
描述函数法:1.根据题意有:AMAN4)(,1M)2)(1()(sssksG4)(1AAN根据题意可得图形(略)。其交汇点在实轴上,即22s,得到此时频率为:2幅值为24)(1AAN即:8A由于极限环为系统从不稳定区域到稳定区域极限环,因此该极限环是稳定的。2.根据题意有:)1sin2(2)(221AaAakAN系统没有交汇点,并且)(1AN曲线在)(sG的外面,故系统是稳定的。3.根据题意有:饱和特性为]1[sin2)(2211AaAaAakAbAN)(1AN在实轴上的最大值为1。如果存在交汇点,则交汇点在实轴上,即502s,得到此时频率为:50临界值为:1/)(50jssG得到:750k。4.根据题意画出BODE图,然后得到低频带宽即可!5.62)(1AAAN如果存在交汇点,则交汇点在实轴上,即12s,得到此时频率为:1临界值为:31/)(1jssG得到:232k。系统拥有极限环。当2k,系统不稳定。当32k,系统稳定。相平面法:1.10010100101.010)(22sssss得到:010010yyy因此有:21yy21210100yyy得到:2211210100yyydydy绘制相平面为:2.上课讲过(略)。3.比较复杂,略。4.0)5.03(2xxxxx根据公式有:00)5.03(212xxxxxdxdx得到奇点为:)0,1(),0,0(分别以该点进行线性化可得:xxx5.05.分段即可。6.以这道题为例,进行讲解。第一问为课本例题,系统存在临界极限环。第二问:25.01)()(sssUsH有05.0yy,1u05.0yy,1u即1y,当05.0yy1y,当05.0yy绘制系统的相平面轨迹为:略。可得系统是稳定的。根据非线性方程得到非线性状态方程,并且基于状态方程绘制系统的相平面图形,进而判定系统的稳定性及其它特性。李雅普洛夫函数4.1ThenormusedinthedefinitionsofstabilityneednotbetheusualEuclidiannorm.Ifthestate-paceisoffinitedimensionn(i.e.,thestatevectorhasncomponents),stabilityanditstypeareindependentofthechoiceofnorm(allnormsare“equivalent”),althoughaparticularchoiceofnormmaymakeanalysiseasier.Forn=2,drawtheunitballscorrespondingtothefollowingnorms:22212xxx(Euclidiannorm)圆222125xxx是一个椭圆12xxx菱形12Sup,xxx正方形RecallthataballB(0x,R),ofcenter0xandradiusR,isthesetofXsuchthatRxx0,andthattheunitballisB(0,1).4.2Forthefollowingsystems,findtheequilibriumpointsanddeterminetheirstability.Indicatewhetherthestabilityisasymptotic,andwhetheritisglobal.(a)34sinxxx(b)5(5)xx平衡点,5x,线性化,xxxxx25/)5(50,asymptoticstability.将平衡点移到原点位置,令,5ˆxx,得:5ˆˆxx令2ˆ)ˆ(xxV,得:6ˆ2)ˆ(xxV因此globalstability.(c)57282sincos3xxxxxx(d)47533(1)sinxxxxxx(e)27(1)sin2xxxxx4.3ConsiderannnmatrixMoftheformTMNN,whereNisamnmatrix.ShowthatMispositivedefinite.if,andonlyif,mnandNhasfullrank.TTTTxNxNxxNNxMx)(4.4ShowthatifMisasymmetricmatrixsuchthat,0TxxMxthenM=0.实对称矩阵的正交对角化。4.5ShowthatifsymmetricpositivedefinitematricesPandQexistsuchthat2TAPPAPQthenalltheeigenvaluesofAhavearealpartstrictlylessthat.令xIAx)(即可。4.6Considerthesystem1230yyyAAAwherethe21nvectorTTTxyyisthestate,andthennmatricesjAareallsymmetricpositivedefinite.Showthatthesystemisgloballyasymptoticallystable,with0asauniqueequilibriumpoint.令0x,可得0,0yy,进而0y。故,0x。令,4.7Thesecondlawofthermodynamicsstatesthattheentropyofanisolatedsystemcanonlyincreasewithtime.HowdosethisrelatetothenotionofaLyapunovfunction?
本文标题:非线性部分习题答案
链接地址:https://www.777doc.com/doc-6750631 .html