您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学《不等式与不等式组》单元教学设计以及思维导图
不等式与不等式组适用年级七年级所需时间课内9课时,课外2课时主题单元学习概述“不等式与不等式组”主题单元结构包括“相关概念”、“探究性质”、“简单应用”三部分,这与课本的内容安排大体相同。教材的编写顺序是“一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。教材以突出应用为目的。在教学中我打破教材安排,采用一种专题式设计,主要考虑到知识之间的关联,打破教材的原有安排,把不等式、一元一次不等式(组)等有关的概念放在一起作为专题一集中处理,把不等式性质及其应用作为专题二集中处理,这是考虑到类比一元一次方程的学习,学完概念后,学习一元一次方程的解法然后学习一元一次方程与实际问题。运用类比的方法学习不等式与不等式组。学完一元一次不等式后,就要学习如何解一元一次不等式,很显然要解决这个问题,就要知道解一元一次不等式的依据——不等式的性质。因此,将这些内容紧密联系,层层递进,易于激发学生的学习兴趣也有利于帮助学生理解知识之间的联系,展示数学知识的整体性。专题三的简单应用是考虑到学完知识学生喜欢追问:学习这些有什么用处呢?而不等式性质问题恰恰会用到解一元一次不等式(组),而学习解一元一次不等式(组)在实际生活中有什么用处呢?接着学习实际问题与一元一次不等式(组),而且学生可以经历从实际问题抽象出数学问题,建立数学模型,应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力。主题单元规划思维导图主题单元学习目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。对应课标1.理解不等式、一元一次不等式的概念。2.类比等式的性质探索得出不等式的性质3.理解掌握不等式的性质,会运用不等式的性质解一元一次不等式(组),会用数值描述不等式(组)的解集。进一步体会数形结合思想。主题单元问题设计1.举例说明什么是等式?类比说出什么是不等式?2.不等式的符号有哪些?3.怎样判断一个式子是否是不等式?4.举例说明什么是一元一次方程,类比说出一元一次不等式的概念。5.学习了等式的相关概念及性质,如何学习不等式?6.在运用不等式性质解不等式时应注意什么?专题划分专题1:不等式与一元一次不等式的感念专题2:探究不等式的性质专题3:应用:(应用一元一次不等式(组)解决实际问题。1)用不等式性质解一元一次不等式。(2)用不等式(组)解决实际问题。专题一不等式与一元一次不等式的定义及相关概念所需课时课内1课时专题一概述本专题是不等式这一主题的起始专题,进一步学习整个主题的基础。本专题的内容包括不等式的概念,一元一次不等式的概念、不等式的解和不等式的解集,用数轴表示不等式的解集等基础知识.本专题的重点不等式、一元一次不等式、不等式的解、解集的概念是重点,难点不等式解集的理解与表示是难点。本专题的主要学习活动包括在学生已有知识和经验的基础上,在老师指导下系统准确地提炼出不等式和一元一次不等式的定义;理解并掌握不等式的解和不等式的解集等概念;学生的主要学习成果包括:理解并掌握不等式、一元一次不等式的定义及相关概念,会借助工具(纸、笔、直尺,几何画板软件等)画出数轴表示不等式的解集专题学习目标知识与能力初步了解不等式及不等式的解的意义。能够用不等式表示数量关系,会判断一个数是不是已知不等式的解。过程与方法通过对问题的探索,适当渗透变量知识,让学生发现不等式的解和方程的解的区别。通过经历实际问题中数量关系的分析抽象过程,体会现实世界各种各样的数量关系,有等量关系也有不等量关系。情感、态度、价值观认识到不等式知识在现实生活中的作用,通过讨论、交流的过程体验数学活动充满着探索性和创造性。专题问题设计1、由情景问题引出不等式的概念2、通过类比方程的概念得出不等式一元一次不等式的概念,3、不等式的解和解集怎样定义?所需教学材料和资源常规资源作图工具(直尺,三角尺等)教学支撑环境多媒体教室,其他纸笔等学习活动设计9.1.1不等式及其解集[教学目标]知识与能力初步了解不等式及不等式的解的意义。能够用不等式表示数量关系,会判断一个数是不是已知不等式的解。过程与方法通过对问题的探索,适当渗透变量知识,让学生发现不等式的解和方程的解的区别。通过经历实际问题中数量关系的分析抽象过程,体会现实世界各种各样的数量关系,有等量关系也有不等量关系。情感、态度、价值观认识到不等式知识在现实生活中的作用,通过讨论、交流的过程体验数学活动充满着探索性和创造性。[重点难点]不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。[教学过程]一、情景导入[投影1]一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系。二、探究新知:不等式的概念若设车速为每小时x千米,你能用一个式子表示上面的关系吗?50/x<2/3①或2/3x>5②像①②这样用“”或“”号表示大小关系的式子,是不等式。我们还见过像a+2≠a这样用“≠”号表示的式子,也是不等式。“”、“”、“≠”叫做不等号,不等号也可以写成“≤”、“≥”的形式。总之,用不等号连接起来的式子叫做不等式。思考1:下列式子中哪些是不等式?[投影2](1)a+b=b+a(2)-3>-5(3)x≠l(4)x十36(5)2mn(6)2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。注意:像①中分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。三、不等式的解和解集思考2:[投影3]判断下列数中哪些能使不等式2/3x50成立:76,73,79,80,74.9,75.1,90,6076,79,80,75.1,90能使不等式2/3x50成立。我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x50的解集,写作x75,这个解集可以用数轴来表示。o75点击打开链接求不等式的解集的过程叫做解不等式.四、能力提升:例题讲解例[投影4]在数轴上表示下列不等式的解集:(1)x-1;(2)x≥-1;(3)x-1;(4)x≤-1解点击打开链接注意:1.实心点表示包括这个点,空心点表示不包括这个点;2、步骤:画数轴,定界点,走方向。、五、巩固新知1、下列哪些是不等式x+36的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,122、直接想出不等式的解集,并在数轴上表示出来:(1)x+36(2)2x8(3)x-20。六、归纳总结1、什么是不等式?什么是一元一次不等式?2、什么是不等式的解?什么是不等式的解集?3、怎样表示不等式的解集?作业:1、(1)用不等式表示下列数量关系:①a比1大;②x与一3的差是正数;③x的4倍与5的和是负数(2)在-4,-2,-1,0,1,3中,找出使不等式成立的x值:(1)x+53,(2)3x5(3)在数轴上表示下列不等式的解集:①x2②x>-3(4)不等式x5有多少个解?有多少个正整数解?评价要点1.能否用严格的数学语言不等式、一元一次不等式及其解或解集的概念.2.能否借助工具准确画出不等式的解集.专题二探究不等式的性质所需课时3课时专题二概述一元一次不等式的性质是本章学习的基础,是接下来学习一元一次不等式的解法的关键。通过这一节课的学习,让学生学会1、探究不等式的基本性质并熟记;2、能利用不等式的基本性质对不等式进行简单的变形,并能说出每一步变形的依据;3、培养学生的探究能力和概括问题的能力教材分析不等式的基本性质是研究不等式的性质,是求解不等式的依据。教材和教案设计本着让学生边尝试边观察,边探索边概括的原则,以便在知识的发生过程中感受知识,在感受过程中接受知识,在接受过程中理解知识,在理解过程中记忆知识。另外,不等式的三个基本性质在表述上也有区别,学生学习中应提醒他们注意。尤其是性质3与前两个性质的区别。教学重点:不等式的基本性质的内容教学难点:不等式的基本性质3的探索及应用教学方法讲授法、探究法、自学释疑法、分组讨论法通过实例的讲授,学生自己发现性质1并概括总结,性质2、3由学生自学、小组讨论后概括,性质3教师适当解释。性质的应用中体现讲练结合。专题学习目标知识技能:理解和掌握不等式的基本性质,并会灵活利用其进行变形。了解一元一次不等式的概念,掌握一元一次不等式的解法运用转化和比较的思想方法,参照一元一次方程的解法得到一元一次不等式的解法,并体会两者的区别与联系。对一元一次不等式解法的理解了解一元一次不等式组和它解集的概念掌握一元一次不等式组的解法,会利用数轴确定其解集过程与方法:通过自主探索或试验、归纳的方法,得到不等式基本性质,并会在不等式的变形中正确应用。一元一次不等式的解法的探索会利用不等式的基本性质解一些简单的不等式,注意与一元一次方程解法做比较。一元一次不等式组的解法让学生经历知识的拓展过程,会应用数轴确定一元一次不等式的解集,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法。情感态度与价值观:通过自主探究体会到不等式与方程的类似与不同之处,感受不等式解法的实际应用,进一步认识到数学是解决实际问题和进行交流的工具。能积极参与问题的讨论,经历知识的拓展过程,感受数形结合思想解决问题的作用,养成自主探索学习的习惯专题问题设计1.说出一元一次不等式的概念2.类比等式的性质猜想不等式的性质?3.不等式的性质与灯饰的性质有哪些区别?4、应用不等式的性质熟练解一元一次不等式。5、通过解一元一次不等式会解一元一次不等式组6、用数轴怎样表示不等式、不等式组的解集所需教学材料和资源常规资源多媒体课件、实物投影其他练习本、笔等学习活动设计一、创设情境,探究问题在解一元一次方程时,我们主要是对方程进行变形。在研究解不等式时,我们同样应先探究不等式的变形规律。如图13.2.3所示,一个倾斜的天平两边分别放有重物,其质量分别为a和b,从天平实验看,显然ab,[问题一]:如果在两边盘内分别加上等量的砝码c,那么天平会发生什么变化?如果把砝码c拿出来呢?不等式的性质1如果ab,那么a+cb+c,a-cb-c这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。点击打
本文标题:初中数学《不等式与不等式组》单元教学设计以及思维导图
链接地址:https://www.777doc.com/doc-6757993 .html