您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 八年级数学上册第十一章全等三角形复习题(附答案)
八年级数学上册第十一章全等三角形复习题一、选择题(每小题3分,共30分)1.能使两个直角三角形全等的条件是()A.两直角边对应相等B.一锐角对应相等C.两锐角对应相等D.斜边相等2.根据下列条件,能画出唯一ABC的是()A.3AB,4BC,8CAB.4AB,3BC,30AC.60C,45B,4ABD.90C,6AB3.如图1,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PEPFB.AEAFC.△APE≌△APFD.APPEPF4.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③5.如图2,AD是ABC△的中线,E,F分别是AD和AD延长线上的点,且DEDF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个6.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等7.如图3,ADAE,===100=70BDCEADBAECBAE,,∠∠∠,下列结论错误的是()A.△ABE≌△ACDB.△ABD≌△ACEC.∠DAE=40°D.∠C=30°ADCB图1EFADCB图2EFADOCB图3ADECB图4FGAEC图5BA′E′D8.已知:如图4,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对9.将一张长方形纸片按如图5所示的方式折叠,BCBD,为折痕,则CBD∠的度数为()A.60°B.75°C.90°D.95°10.根据下列已知条件,能惟一画出△ABC的是()A.AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6二、填空题(每小题3分,共24分)1.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)2.如图6,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.3.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.4.如图7,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.5.如图8,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.6.如图9,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角______.7.如图10,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.ADECB图6ADECB图7ADOCB图88.如图11,在等腰RtABC中,90C,ACBC,AD平分BAC交BC于D,DEAB于E,若10AB,则BDE的周长等于____________;三、解答题(本大题共46分)1.(本题6分)如图,,,,AFEB四点共线,ACCE,BDDF,AEBF,ACBD。求证:ACFBDE。2.(本题6分)如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。3.(本题6分)如图,,APCP分别是ABC外角MAC和NCA的平分线,它们交于点P。求证:BP为MBN的平分线。ADOCB图9ADCB图10图114.(本题8分)如图,D是ABC的边BC上的点,且CDAB,ADBBAD,AE是ABD的中线。求证:2ACAE。5.(本题10分)如图,在ABC中,ABAC,12,P为AD上任意一点。求证:ABACPBPC。6.(本题10分)填空,完成下列证明过程.如图,ABC△中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BDCE,=DEFB∠∠求证:=EDEF.证明:∵∠DEC=∠B+∠BDE(),又∵∠DEF=∠B(已知),∴∠______=∠______(等式性质).在△EBD与△FCE中,∠______=∠______(已证),______=______(已知),∠B=∠C(已知),∴EBDFCE△≌△().∴ED=EF().ADECBF八年级数学上册第十一章全等三角形复习题答案一、选择题:1.A2.C3.D4.C5.D6.C7.C8.A9.C10.C二、填空题1.一定,一定不2.50°3.40°4.HL5.略(答案不惟一)6.略(答案不惟一)7.58.10三、解答题1.思路分析:从结论ACFBDE入手,全等条件只有ACBD;由AEBF两边同时减去EF得到AFBE,又得到一个全等条件。还缺少一个全等条件,可以是CFDE,也可以是AB。由条件ACCE,BDDF可得90ACEBDF,再加上AEBF,ACBD,可以证明ACEBDF,从而得到AB。解答过程:ACCE,BDDF90ACEBDF在RtACE与RtBDF中AEBFACBD∴RtACERtBDF(HL)ABAEBFAEEFBFEF,即AFBE在ACF与BDE中AFBEABACBDACFBDE(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。2.思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。3.思路分析:要证明“BP为MBN的平分线”,可以利用点P到,BMBN的距离相等来证明,故应过点P向,BMBN作垂线;另一方面,为了利用已知条件“,APCP分别是MAC和NCA的平分线”,也需要作出点P到两外角两边的距离。解答过程:过P作PDBM于D,PEAC于E,PFBN于FAP平分MAC,PDBM于D,PEAC于EPDPECP平分NCA,PEAC于E,PFBN于FPEPFPDPE,PEPFPDPFPDPF,且PDBM于D,PFBN于FBP为MBN的平分线。解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。4.思路分析:要证明“2ACAE”,不妨构造出一条等于2AE的线段,然后证其等于AC。因此,延长AE至F,使EFAE。解答过程:延长AE至点F,使EFAE,连接DF在ABE与FDE中AEFEAEBFEDBEDEABEFDE(SAS)BEDFADFADBEDF,ADCBADB又ADBBADADFADCABDF,ABCDDFDC在ADF与ADC中ADADADFADCDFDCADFADC(SAS)AFAC又2AFAE2ACAE。解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。5.思路分析:欲证ABACPBPC,不难想到利用三角形中三边的不等关系来证明。由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段ABAC。而构造ABAC可以采用“截长”和“补短”两种方法。解答过程:法一:在AB上截取ANAC,连接PN在APN与APC中12ANACAPAPAPNAPC(SAS)PNPC在BPN中,PBPNBNPBPCABAC,即AB-ACPB-PC。法二:延长AC至M,使AMAB,连接PM在ABP与AMP中12ABAMAPAPABPAMP(SAS)PBPM在PCM中,CMPMPCABACPBPC。解题后的思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。6.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等.
本文标题:八年级数学上册第十一章全等三角形复习题(附答案)
链接地址:https://www.777doc.com/doc-6765471 .html