您好,欢迎访问三七文档
第1页(共21页)2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分、每小题给出的四个选项中,只有一个是正确的,请选出正确的选项,注意可以用多种不同的方法来选取正确答案.)1.(3分)下列运算正确的是()A.B.C.D.2.(3分)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分3.(3分)已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.(3分)当一个多边形的边数增加时,它的内角和与外角和的变化情况分别是()A.增大,增大B.增大,不变C.不变,增大D.不变,不变5.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.﹣1D.﹣26.(3分)为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是()A.4900x2=6400B.4900(1+x)2=6400C.4900(1+x%)2=6400D.4900(1+x)+4900(1+x)2=64007.(3分)下列命题中,是真命题的是()A.若a•b=0,则a=0或b=0B.若a+b>0,则a>0且b>0C.若a﹣b=0,则a=0或b=0D.若a﹣b>0,则a>0且b>08.(3分)已知反比例函数y=(k≠0)的图象经过点(﹣2,3),若x>﹣2,则()A.y>3B.y<3C.y>3或y<0D.0<y<3第2页(共21页)9.(3分)关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是()A.当k=时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤D.若方程有实数根,则k≤10.(3分)如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP=;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④二、填空题:本大题有6个小题,每小题4分,共24分11.(4分)若在实数范围内有意义,则a满足.12.(4分)在一次体检中,测得某小组5名同学的身高分别是159,160,155,160,161(单位:厘米),则这组数据的中位数是厘米.13.(4分)已如点A(1,﹣k+2)在反比例函数y=(k≠0)的图象上,则k=.14.(4分)方程(x﹣1)2=20202的根是.15.(4分)一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的1.5倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是米.(结果保留根号)16.(4分)如图,在▱ABCD中,AC⊥AB,AC与BD相交于点O,在同一平面内将△ABC沿AC翻折,得到△AB′C,若四边形ABCD的面积为24cm2,则翻折后重叠部分(即S△ACE)的面积为cm2.第3页(共21页)三、解答题:本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1);(2).18.(8分)解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2+2x﹣5=0.19.(8分)已知一次函数y=(m﹣1)x+m﹣2与反比例函数数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.20.(10分)为切实减轻中小学生课业负担、全面实施素质教育,某中学对本校学生课业负担情况进行调查.在本校随机抽取若干名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,且完成课外作业时间低于60分钟(不包括60分钟)的学生数占被调查人数的10%.现将抽查结果绘制成了一个不完整的频数分布直方图,如图所示:(1)这次被抽查的学生有人;(2)请补全频数分布直方图;(3)若该校共有1200名学生,请估计该校大约有多少名学生每天完成课外作业时间在80分钟以上(包括80分钟).第4页(共21页)21.(10分)已知,如图1,四边形ABCD是一张菱形纸片,其中∠A=45°,把点A与点C分别折向点D,折痕分别为EG和FH,两条折痕的延长线交于点O.(1)请在图2中将图形补充完整.(2)求∠EOF的度数.(3)判断四边形DGOH也是菱形吗?请说明理由.22.(12分)有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.(12分)如图,在矩形ABCD中,已知AB=4,BC=2,E为AB的中点,设点P是∠DAB平分线上的一个动点(不与点A重合).(1)证明:PD=PE.(2)连接PC,求PC的最小值.(3)设点O是矩形ABCD的对称中心,是否存在点P,使∠DPO=90°?若存在,请直接写出AP的长.第5页(共21页)第6页(共21页)2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分、每小题给出的四个选项中,只有一个是正确的,请选出正确的选项,注意可以用多种不同的方法来选取正确答案.)1.(3分)下列运算正确的是()A.B.C.D.【分析】根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(﹣)2=7,故本选项正确;D、没有意义,故本选项错误.故选:C.【点评】主要考查了实数的算术平方根和平方运算,一个实数的算术平方根为非负数,一个实数的平方为一个非负数.2.(3分)平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【分析】根据平行四边形,矩形,菱形,正方形的对角线的性质对各选项分析判断后利用排除法求解.【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.【点评】本题主要考查了正方形的性质,平行四边形的性质,矩形的性质,菱形的性质,是基础题,熟记各图形的性质是解题的关键.3.(3分)已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()第7页(共21页)A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】只需把所给点的横纵坐标相乘,判断出k的取值范围,再判断出函数所在的象限.【解答】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于该反比例函数系数.4.(3分)当一个多边形的边数增加时,它的内角和与外角和的变化情况分别是()A.增大,增大B.增大,不变C.不变,增大D.不变,不变【分析】利用n边形的内角和公式(n﹣2)•180°(n≥3)且n为整数),多边形外角和为360°即可解决问题.【解答】解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到一个多边形的边数增加时,则内角和增大.多边形外角和为360°,保持不变.故选:B.【点评】本题主要考查了多边形的内角和公式和外角和定理,是需要熟练掌握的内容.5.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.﹣1D.﹣2【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选:D.【点评】本题考查了一元二次方程的解的应用,能运用巧妙的方法求出m+n的值是解此第8页(共21页)题的关键,题型较好,难度适中.6.(3分)为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是()A.4900x2=6400B.4900(1+x)2=6400C.4900(1+x%)2=6400D.4900(1+x)+4900(1+x)2=6400【分析】这两年投入教育经费的年平均增长率为x,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程.【解答】解:这两年投入教育经费的年平均增长率为x,4900(1+x)2=6400.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)下列命题中,是真命题的是()A.若a•b=0,则a=0或b=0B.若a+b>0,则a>0且b>0C.若a﹣b=0,则a=0或b=0D.若a﹣b>0,则a>0且b>0【分析】根据整式的乘法和不等式的性质判断即可.【解答】解:A、若a•b=0,则a=0或b=0,是真命题;B、若a+b>0,当a>0,b<0,|a|>|b|,也成立,原命题是假命题;C、若a﹣b=0,则a=b,原命题是假命题;D、若a﹣b>0,当a>0,b<0时,也成立,原命题是假命题;故选:A.【点评】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)已知反比例函数y=(k≠0)的图象经过点(﹣2,3),若x>﹣2,则()A.y>3B.y<3C.y>3或y<0D.0<y<3第9页(共21页)【分析】先把(﹣2,3)代入y=中求出k得到反比例函数解析式为y=﹣,再分别计算出自变量x>﹣2,对应的反比例函数值,然后根据反比例函数的性质求解.【解答】解:把(﹣2,3)代入y=得k=﹣2×3=6,所以反比例函数解析式为y=﹣,∴x=﹣,当x>﹣2时,﹣>﹣2;∴当y>0时,﹣6>﹣2y,∴y>3,所以函数值y的取值范围为y>3或y<0.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是()A.当k=时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤D.若方程有实数根,则k≤【分析】因为已知没有明确此方程是否是一个一元二次方程,所以方程有两种情况,既可以是一元一次方程,也可以一元二次方程,所以分两种情况分别去求k的取值范围,然后结合选项判断选择什么.【解答】解:若k=0,则此方程为﹣x+1=0,所以方程有实数根为x=1,则B错误;若k≠0,则此方程是一元二次方程,由于方程有实数根,∴△=(2k﹣1)2﹣4k2=﹣4k+1≥0,∴k≤且k≠0;综上所述k的取值范围是k≤.故A错误,C错误,D正确.第10页(共21页)故选:D.【点评】本题首先应该分类讨论,然后利用根的判别式及
本文标题:浙教版初中数学八年级下册期末测试题(2019-2020学年浙江省杭州市西湖区
链接地址:https://www.777doc.com/doc-6770492 .html