您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 招商证券智能汽车系列报告之实现路径智能驾驭电动未来
2019-2020学年新人教A版必修一命题及其关系充分条件与必要条件学案1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分又不必要条件p⇏q且q⇏p知识拓展从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若AB,则p是q的充分不必要条件;(5)若AB,则p是q的必要不充分条件;(6)若A⃘B且A⊉B,则p是q的既不充分又不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“对顶角相等”是命题.(√)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)当q是p的必要条件时,p是q的充分条件.(√)(4)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(5)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案A3.“x-3=0”是“(x-3)(x-4)=0”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要题组三易错自纠4.命题“若x2y2,则xy”的逆否命题是()A.若xy,则x2y2B.若x≤y,则x2≤y2C.若xy,则x2y2D.若x≥y,则x2≥y2答案B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2y2,则xy”的逆否命题是“若x≤y,则x2≤y2”.5.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案C解析x>y⇏x>|y|(如x=1,y=-2),但当x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.6.已知p:xa是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.题型一命题及其关系1.下列命题是真命题的是()A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2答案A2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是()A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案D3.原命题为“△ABC中,若cosA0,则△ABC为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.真,假,假答案B解析若cosA0,A为钝角,则△ABC为钝角三角形,所以原命题为真,则逆否命题也为真;△ABC为钝角三角形,可能是B或者C为钝角,A可能为锐角,cosA0.所以逆命题为假,则否命题也为假.故选B..设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是____________.答案若方程x2+x-m=0没有实根,则m≤0思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二充分必要条件的判定典例(1)“0≤m≤1”是“函数f(x)=cosx+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案A解析方法一若0≤m≤1,则0≤1-m≤1,∴cosx=1-m有解.要使函数f(x)=cosx+m-1有零点,只需|m-1|≤1,解得0≤m≤2,故选A.方法二函数f(x)=cosx+m-1有零点,则|m-1|≤1,解得0≤m≤2,∵{m|0≤m≤1}{m|0≤m≤2}.∴“0≤m≤1”是“函数f(x)=cosx+m-1”有零点的充分不必要条件.(2)已知条件p:x1或x-3,条件q:5x-6x2,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案A解析由5x-6x2,得2x3,即q:2x3.所以q⇒p,p⇏q,所以綈p⇒綈q,綈q⇏綈p,所以綈p是綈q的充分不必要条件,故选A.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练(1)(2018届莆田一中月考)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A.充要条件B.既不充分又不必要条件C.充分不必要条件D.必要不充分条件答案D解析非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件.(2)设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案A解析若“(a-b)a2<0”,则“a<b”,是真命题;而若“a<b”,则“(a-b)a2<0”当a=0时不成立,是假命题.故选A.题型三充分必要条件的应用典例已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}.由x∈P是x∈S的必要条件,知S⊆P.则1-m≤1+m,1-m≥-2,∴0≤m≤3.1+m≤10,∴当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].引申探究若本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件.解若x∈P是x∈S的充要条件,则P=S,∴1-m=-2,1+m=10,方程组无解,即不存在实数m,使x∈P是x∈S的充要条件.思维升华充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练(1)(2017·山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________.答案(-∞,-7]∪[1,+∞)解析p对应的集合A={x|x<m或x>m+3},q对应的集合B={x|-4<x<1},由p是q的必要不充分条件可知,BA,∴m≥1或m+3≤-4,即m≥1或m≤-7.(2)设n∈N+,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.答案3或4解析由Δ=16-4n≥0,得n≤4,又n∈N+,则n=1,2,3,4.当n=1,2时,方程没有整数根;当n=3时,方程有整数根1,3,当n=4时,方程有整数根2.综上可知,n=3或4.等价转化思想在充要条件中的应用典例已知p:1-x-13≤2,q:x2-2x+1-m2≤0(m>0),綈p是綈q的必要不充分条件,则实数m的取值范围为________.思想方法指导等价转化思想是指在解题中将一些复杂的、生疏的问题转化成简单的、熟悉的问题.本题中既有对题目中条件的化简,又有充分必要条件和集合间关系的转化.解析∵綈p是綈q的必要不充分条件,∴q是p的必要不充分条件.即p是q的充分不必要条件,由x2-2x+1-m2≤0(m>0),-m≤x≤1+m(m>0).∴q对应的集合为{x|1-m≤x≤1+m,m>0}.设M={x|1-m≤x≤1+m,m>0}.又由1-x-13≤2,得-2≤x≤10,∴p对应的集合为{x|-2≤x≤10}.设N={x|-2≤x≤10}.由p是q的充分不必要条件知,NM,∴m>0,1-m<-2,1+m≥10或m>0,1-m≤-2,1+m>10,解得m≥9.∴实数m的取值范围为[9,+∞).答案[9,+∞)1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案B2.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为()A.1B.2C.3D.4答案B解析原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题.3.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案B4.(2017·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c答案A解析否命题是将原命题的条件和结论都否定,故命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”,故选A.5.(2017·广东名校模拟)王昌龄的《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件答案B解析“攻破楼兰”是“返回家乡”的必要条件.故选B.6.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sinx-1x+a为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案C解析显然当a=0时,f(x)=sinx-1x为奇函数.当f(x)为奇函数时,f(-x)+f(x)=0.又f(-x)+f(x)=sin(-x)-1-x+a+sinx-1x+a=0,因此2a=0,故a=0.所以“a=0”是“函数f(x)为奇函数”的充要条件.7.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.8.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且
本文标题:招商证券智能汽车系列报告之实现路径智能驾驭电动未来
链接地址:https://www.777doc.com/doc-6777174 .html