您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 上市公司财务预警模型的实证研究
1全流通条件下上市公司财务危机预警模型的实证研究课题研究人:张宪、郝力平、涂春辉、王法力、洪明、刘年财选送单位:航空证券有限责任公司2内容提要本文选择了在2006年1月至2006年6月期间,在2005年年报公布后,因财务状况异常而首次被ST的53家上市公司,同时选取同行业(按证监会行业代码分类)、同规模的53家非ST公司作为配对样本。本文从财务指标的角度出发,在了解我国上市公司财务困难成因的基础上,探讨了各财务因素之间的关系以及它们对上市公司发生财务困难的预警作用。本文的创新点在于,采用了最新的公司财务数据,改进了数据处理的方式,在因子分析的基础上利用二分类Logistic回归建立了财务困难的预警模型,该模型的预测效果优于现有的研究结论。同时,本文还针对全流通之后新的市场环境,将“股票总市值/负债总额”指标引入模型讨论。本文得到的结论如下。(1)从统计描述的角度,ST公司与非ST公司在已获利息倍数、销售净利率、资产净利率、净资产收益率、应收帐款周转、现金流动负债比等指标上有明显差异,而在速动比率、流动比率、销售毛利率、营业利润比重等指标上差距不大,且有交叉现象。(2)从单变量分析的角度,已获利息倍数、资产负债率、流动比率、销售净利率、资产净利率、总资产周转率、存货周转率、销售现金比率、现金债务总额比、全部资产现金回收率、现金流动负债比等指标,能在α=0.05的较小显著性水平下与公司的财务困难情况显著相关。(3)从多元回归的角度,通过因子分析处理原始数据,然后利用二分类Logistic回归建立了财务困难的预警模型1,对现有数据的判断准确率为94.62%。考虑到全流通之后的市场现实,本文认为股票市值对上市公司的影响不容忽视,“股票总市值/负债总额”这一指标引入预测模型。同样是通过因子分析处理原始数据,利用二分类Logistic回归建立了财务困难的预警模型2,对现有数据的判断准确率为94.57%。这两个模型的预测效果都超过90%,准确率基本一致,优于目前的研究结论。本文认为,由于模型2的结果受到了历史数据的局限,股票市值对于财务预警模型的作用尚未得到体现。未来随着全流通市场的进一步规范和成熟,市值考核为指标的股权价值激励政策的逐步推广,股票市值对于财务预警模型的作用继续值得今后进一步深入研究。3目录1、前言···················································32、文献综述···············································33、样本选取和研究方法····································43.1研究样本··········································43.2研究数据··········································53.3研究变量··········································53.4研究方法··········································64、样本变量统计描述·····································65、单变量研究···········································75.1独立样本的均值比较方法····························75.2T检验分析结果····································86、多元回归分析·········································86.1样本及数据········································96.2Logistic多元回归分析·····························96.2.1多元回归方法选择································96.2.2用因子分析对数据预处理··························96.2.3Logistic回归建立预警模型1·······················116.3将股票市值因素引入,建立预警模型2················137结论···················································1841.前言财务危机给企业和社会带来了严重的影响,适时、准确地对企业财务危机进行预测分析是市场竞争机制的客观要求。因此,利用相关信息构建有效的财务危机预警模型,从而获得财务状况恶化的上市公司预警信号,对于投资者、债权人、经营者以及监管者等诸多方面无疑都具有重要的现实意义。财务危机(Financialcrisis)又称财务困境(Financialdistress),国外多数同类研究采用破产标准(Altman,1968;Ohlson,1971;Plattandplatt,1990and1994)。但考虑到中国的实际情况,国内学者大都将特别处理(ST)的上市公司作为存在财务危机的上市公司(陈静,1999;李华中,2001)。本文采用以上学者的思路,将ST公司作为研究样本,并将“财务危机”定义为“因财务状况异常而被特别处理(ST)”。本文在上市公司财务预警模型的构建中,首先以描述统计和单变量分析对影响企业的财务危机的因素做出初步判断,在此基础上建立多变量判断模型,通过因子分析处理数据,利用二分类Logistic回归建立财务困难的预警模型,对样本企业做出综合评判。同时,本文针对全流通之后的市场变化,对于股票市值在财务预警中的作用进行了积极的探讨。2.文献综述国外关于财务失败预测研究影响最广泛的是威廉·比弗(WillianBeaver)的单一变量模型和阿尔特曼(EdwardI.Altiman)的“Z-Score”模型。比弗通过对1945年—1964年间79家失败企业和对应的79家成功企业的比较研究表明,下列财务比率对预测财务失败是最有效的:现金流量/债务总额,净收益/资产总额(资产收益率),债务总额/资产总额(资产负债率)。美国财务专家阿尔特曼(1968)提出的企业失败预测模型是以营运资金/资产总额、、留存收益/资产总额、息税前利润/资产总额、普通股及优先股市价/负债总额、销售总额/资产总额等五项财务比率的加权平均数来测试财务失败的。该模型主要针对于上市公司,样本包括了1946年—1965年间提出破产申请的33家公司和同样数量的非破产公司。通过计算,该模型产生了一个总的判别分,成为Z值。Z值越低,企业发生财务失败的可能性就越大。同时确定了Z值实际截止点用以判断。阿尔特曼将各种有关的比率合并成单一的预测指数,克服了单个比率内容有限、无法全面揭示企业财务状况的缺点。奥尔逊(Ohlson,1980)提出一种logit模型。该模型建立在累积概5率函数的基础上,而不需要满足自变量服从多元正态分布和两组协方差相等的条件。Logit模型另一个重要优点是在(0,1)上预测一个公司是否发生财务危机的几率。在国内,学者周首华等(1996)对阿尔特曼的“Z-score”模型进行了一定的拓展,建立了“F分数模式”,F分数模式的临界值是0.0274,此数值上下0.0775为所谓的不确定区域,F分数越小,则公司发生财务危机的可能性越大。陈静(1999)根据1995年至1997年54家样本企业财务资料,分别进行了单变量和多变量分析,得出结论是在宣布前一年预警模型的成功率较高,离宣布日越远,则成功率越低。吴世农、卢贤义(2001)对上市公司财务危机预警研究成果表明:(1)我国上市公司财务困境具有可预测性。(2)在单变量模型中,净资产报酬率的判定效果较好。(3)多变量模型优于单变量判定模型。(4)比较多变量模型下的3种模型,logit模型的判定准确性最高。李炳承(2004)选取了105家ST公司与105家非ST公司的配对样本进行均值和总样本均值差异分析,研究发现,财务征兆主要表现为:留存收益和营运资本短缺、应收项目和短期借款多、营业利润低等。陈晓、陈治鸿(2000)以70家公司组成分析样本,通过每大类财务指标中分别选取一个指标来进行检验,认为营运资本与总资产比率、负债权益比、应收帐款周转率、主营利润与总资产比率、非主营利润与总资产比率、留存收益与总资产比率这6个指标的财务困境预测效果最好。3.样本选取和研究方法3.1研究样本本文选择了在2006年1月至2006年6月期间,在2005年年报公布后,因财务状况异常而首次被ST的53家上市公司,为了更好地研究样本的特征,我们同时选取同行业(按证监会行业代码分类)、同规模的53家非ST公司作为配对样本。在选取样本时我们注意以下问题:(1)考虑到ST公司是由于2005年报公布后,连续2年亏损而导致被ST的。在选择观测年限时,取被ST前1年的财务年度的财务指标,即选择2004年的财务指标,对应的配对样本取同期的财务指标。(2)为了使样本更具有代表性,对非ST公司的选取是在保持同行业、同规模的原则下选取。(3)非ST的样本选取同行业为第一选择标准,即在资产规模不同的情况下,保持行业的一致性。6(4)对ST样本的选择时,由于本文目的在于研究财务信息对财务预警的作用,因此剔除了有以下几种情况的公司:被注册会计师出具无法表示意见或否定意见的审计报告;追溯调整导致最近两年连续亏损;在法定期限内未依法披露定期报告;在规定期限内未对存在重大会计差错或虚假财务会计报告进行改正;主营业务所属行业发生变化的,行业归属不符合证监会行业要求的。3.2研究数据本文中的数据均来自Wind资讯金融终端。首先从Wind资讯金融终端找出2006年内被ST的公司信息,然后再根据同行业、同规模的原则查找对应的配对样本,提取样本的财务数据。数据是运用SPSS13.0进行处理分析的。3.3研究变量根据我国上市公司的特点,本文分别从偿债能力、盈利能力、运营能力、现金流量等4个方面选择了19个财务指标,作为构建财务危机预警模型的预选指标。表1:财务指标汇总表组别标号指标名称公式偿债能力X1已获利息倍数(利润总额+利息费用)/利息费用X2资产负债率负债总额/资产总额X3速动比率(流动资产-存货)/流动负债X4流动比率流动资产/流动负债X5长期负债与营运资金比率长期负债/(流动资产-流动负债)盈利能力X6销售净利率净利润/主营业务收入X7资产净利率净利润/资产总额X8净资产收益率净利润/净资产X9销售毛利率(主营收入-主营成本)/主营收入X10营业利润比重营业利润/利润总额营运能力X11总资产周转率主营业务收入/平均资产总额X12存货周转率主营业务成本/平均存货X13应收帐款周转率主营业务收入/平均应收帐款X14流动资产周转率主营业务收入/平均流动资产X15营运资本周转率(流动资产-流动负债)/资产总额现金流量X16销售现金比率经营现金流量净额/主营业务收入X17现金债务总额比经营现金流量净额/负债总额X18全部资产现金回收率经营现金流量净额/资产总额X19现金流动负债比经营现金流量净额/流动负债73.4研究方法本文主要对样本进行截面分析和回归分析。(1)描述性分析。(2)单变量分析。通过对ST公司的19个财务指标与非ST公司同期指标的均值差异进行T值检验,以证明它们的显著性差异以及对区分财务困难公司的作用。(3)多变量分析。根据单变量分析的结果,选取ST公司与非ST公司之间具有显著性差异的财务指标变量进行多元回归分析,先通过因子分析处理数据,然后利用二分类Logistic回归建立财务困难的预警模型并检验。4.样本变量统计描述表2:财务指标基本统计量比较表自变量平均值标准差最大值最小值ST非STST非STST非STST非STX1-5.459.517.9011.482.6953.41-38.981.14X262.9841.4618.0713.74113.4766.4416
本文标题:上市公司财务预警模型的实证研究
链接地址:https://www.777doc.com/doc-681001 .html