您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版初中数学课本知识点归纳
1人教版七年级上册数学课本知识点归纳第一章有理数(一)正负数1.正数:大于0的数。2.负数:小于0的数。3.0即不是正数也不是负数。4.正数大于0,负数小于0,正数大于负数。(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法21.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a−b=a+(−b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2.乘积是1的两个数互为倒数。3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。2.除以一个不等于0的数,等于乘这个数的倒数。3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)32.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。4.同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。2.同级运算,从左到右进行。3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章整式(一)整式1.整式:单项式和多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3.系数;一个单项式中,数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5.多项式:几个单项式的和叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。410.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变第三章一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。(二)一元一次方程。1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。2.解:求出的方程中未知数的值叫做方程的解。(二)等式的性质1.等式两边加(或减)同一个数(或式子),结果仍相等。如果a=b,那么a±c=b±c52.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。如果a=b,那么ac=bc;如果a=b,(c‡0),那么a∕c=b∕c。(三)解方程的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。1.去分母:把系数化成整数。2.去括号3.移项:把等式一边的某项变号后移到另一边。4.合并同类项5.系数化为1第四章图形认识初步一、图形认识初步1.几何图形:把从实物中抽象出来的各种图形的统称。2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5.点,线,面,体①图形是由点,线,面构成的。6②线与线相交得点,面与面相交得线。③点动成线,线动成面,面动成体。二、直线、线段、射线1.线段:线段有两个端点。2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。3.直线:将线段的两端无限延长就形成了直线。直线没有端点。4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。5.相交:两条直线有一个公共点时,称这两条直线相交。6.两条直线相交有一个公共点,这个公共点叫交点。7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)9.距离:连接两点间的线段的长度,叫做这两点的距离。三、角1.角:有公共端点的两条射线组成的图形叫做角。2.角的度量单位:度、分、秒。3.角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。4.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,7所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。④工具:量角器、三角尺、经纬仪。5.余角和补角①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。③补角的性质:等角的补角相等④余角的性质:等角的余角相等8初一上册数学第一章“有理数”知识点小结(人教版)91011121314151617初一上册数学第一章“有理数”练习题及答案(人教版)181920212223242526初一上册数学第四章“图形初步认识”练习题及答案(人教版)第五章相交线与平行线一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。如直线AB、CD相交于点O。ADCOB对顶角:两条直线相交出现对顶角。顶点相同,角的两边互为反向延长线.,满足这种关系的角,互为对顶角,对顶角相等。对顶角是成对出现的。邻补角:有一条公共边,角的另一边互为反向延长线.满足这种关系的两个角,互为领补角。邻补角与补角的区别与联系1.邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180°2.互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。领补角与对顶角的比较二、垂线31垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。垂直的表示:用“⊥”和直线字母表示垂直例如:如图,a、b互相垂直,O叫垂足.a叫b的垂线,b也叫a的垂线。则记为:a⊥b或b⊥a;若要强调垂足,则记为:a⊥b,垂足为O.垂直的书写形式:如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。书写形式:∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。书写形式:∵AB⊥CD(已知)∴∠AOD=90°(垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90°垂线的画法:如图,已知直线l和l上的一点A,作l的垂线.则所画直线AB是过点A的直线l的垂线.工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线.垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直.2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形)同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。baODAOCBBAl124356BDAE32如∠1和∠5,∠4和∠8。内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。(两个角在两条截线内)如∠3和∠5,∠4和∠6。同旁内角:一边都在截线上而且反向,另一边在截线同旁的两个角。(两个角在两条截线内)如∠3和∠6,∠4和∠5。同位角、内错角、同旁内角的比较四、平行线平行线:在同一平面内,不相交的两条直线叫做平行线。平行线的表示:我们通常用符号“//”表示平行。任意两条直线,有两种位置关系,一种是相交,另一种是平行。平行线的画法:33已知直线a和直线外的一个已知点P,经过点P画一条直线与已知直线a平行。一、帖(线)二、靠(尺)a三、移(点)四、画(线)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。∵b∥ab∥c∴a∥cab平行线具有传递性。c五、平行线的判定判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。●P12abc34简单说成:同位角相等,两直线平行判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行.六、平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单地说:两直线平行,同旁内角互补.七、命题、定理、证明命题:判断一件事情的语句,叫做命题。命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。数学中的命题常可以写成“如果……那么……”的形式,“如果”后的部分是题设,“那么”后的部分是结论。如果题设成立,那么结论一定成立,这样的命题称真命题。命题成立,而结论不一定成立,这样的命题称假命题。定理:有些真命题是基本事实,它们的正确性是经过推理证实的,无需再次进行证明的,这样的真命题叫定理。证明:很多情况下,一
本文标题:人教版初中数学课本知识点归纳
链接地址:https://www.777doc.com/doc-6811220 .html