您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20162017学年上海市虹口区高一上期末数学试卷
小明文库页(共15页)2016-2017学年上海市虹口区高一(上)期末数学试卷一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B=.2.(3分)不等式|x﹣3|≤1的解集是.3.(3分)不等式>4的解集是.4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是.6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是.8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为.10.(3分)设f(x)=log2(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围是.11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为.(将你认为正确结论的序号都填上)二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A小明文库页(共15页)∩(∁UB)=()A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.∅13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|B.y=()xC.y=D.y=﹣x315.(4分)设x,y∈R,a>1,b>1,若ax=by=3,a+b=6,则+的最大值为()A.B.C.1D.216.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x0))∈M,则x0的取值范围为()A.(0,]B.[0,]C.(,]D.(,)17.设f(x)=5|x|﹣,则使得f(2x+1)>f(x)成立的x取值范围是()A.(﹣1,﹣)B.(﹣3,﹣1)C.(﹣1,+∞)D.(﹣∞,﹣1)∪(﹣,+∞)三、解答题(本大题慢点50分,共7小题)18.(10分)已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(∁UA)∩B={﹣2},求实数p、q、r的值.19.(10分)(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.20.(10分)已知函数f(x)=log2||x|﹣1|.(1)作出函数f(x)的大致图象;(2)指出函数f(x)的奇偶性、单调区间及零点.21.已知f(x)=|x|(2﹣x)(1)作出函数f(x)的大致图象,并指出其单调区间;小明文库页(共15页)(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.22.(10分)如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.23.(10分)已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称.(1)若f(g(x))=6﹣x2,求实数x的值;(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).24.已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.四、附加题25.设函数φ(x)=a2x﹣ax(a>0,a≠1).(1)求函数φ(x)在[﹣2,2]上的最大值;(2)当a=时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.小明文库页(共15页)2016-2017学年上海市虹口区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分30分,共10题)1.(3分)已知集合A={﹣2,﹣1,0,2},B={x|x2=2x},则A∩B={0,2}.【解答】解:∵集合A={﹣2,﹣1,0,2},B={x|x2=2x}={0,2},∴A∩B={0,2}.故答案为:{0,2}.2.(3分)不等式|x﹣3|≤1的解集是[2,4].【解答】解:∵|x﹣3|≤1,∴﹣1≤x﹣3≤1,解得:2≤x≤4,故答案为:[2,4].3.(3分)不等式>4的解集是(2,12).【解答】解:∵>4,∴>0,即<0,解得:2<x<12,故答案为:(2,12).4.(3分)已知函数f(x)=3x+a的反函数y=f﹣1(x),若函数y=f﹣1(x)的图象经过(4,1),则实数a的值为1.【解答】解:f(x)=3x+a的反函数y=f﹣1(x),∵函数y=f﹣1(x)的图象经过(4,1),原函数与反函数的图象关于y=x对称∴f(x)=3x+a的图象经过(1,4),小明文库页(共15页)即3+a=4,解得:a=1.故答案为:1.5.(3分)命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是若实数a,b满足a=4且b=3,则a+b=7”.【解答】解:命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是“若实数a,b满足a=4且b=3,则a+b=7”,故答案为:若实数a,b满足a=4且b=3,则a+b=7”6.(3分)已知条件p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,则实数k的取值范围是k≤﹣1.【解答】解:∵p:2k﹣1≤x≤﹣3k,条件q:﹣1<x≤3,且p是q的必要条件,∴(﹣1,3]⊆[2k﹣1,﹣3k],∴,解得:k≤﹣1,故答案为:k≤﹣1.7.(3分)已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是(﹣2,0)∪(0,2).【解答】解:函数y=f(x)是R上的奇函数,在区间(0,+∞)单调递增∴函数y=f(x)在R上单调递增,且f(0)=0∵f(﹣2)=﹣f(2)=0,即f(2)=0.∴当x<﹣2时,f(x)<0,当﹣2<x<0时,f(x)>0,当0<x<2时,f(x)<0,当x>2时,f(x)>0,那么:xf(x)<0,即或,∴得:﹣2<x<0或0<x<2.小明文库页(共15页)故答案为(﹣2,0)∪(0,2).8.(3分)函数f(x)=|x2﹣4|﹣a恰有两个零点,则实数a的取值范围为a=0或a>4.【解答】解:函数g(x)=|x2﹣4|的图象如图所示,∵函数f(x)=|x2﹣4|﹣a恰有两个零点,∴a=0或a>4.故答案为:a=0或a>4.9.(3分)已知函数f(x)=,若f(f(a))=2,则实数a的值为﹣,,16.【解答】解:由f(x)=,f(f(a))=2,当log2a≤0时,即0<a≤1时,(log2a)2+1=2,即(log2a)2=1,解得a=,当log2a>0时,即a>1时,log2(log2a)=2,解得a=16,因为a2+1>0,log2(a2+1)=2,即a2+1=4小明文库页(共15页)解得a=(舍去),或﹣,综上所述a的值为﹣,,16,故答案为:﹣,,16,10.(3分)设f(x)=log2(2+|x|)﹣,则使得f(x﹣1)>f(2x)成立的x取值范围是(﹣1,).【解答】解:函数f(x)=log2(2+|x|)﹣,是偶函数,当x≥0时,y=log2(2+x),y=﹣都是增函数,所以f(x)=log2(2+x)﹣,x≥0是增函数,f(x﹣1)>f(2x),可得|x﹣1|>|2x|,可得3x2+2x﹣1<0,解得x∈(﹣1,).故答案为:(﹣1,).11.已知函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论:①函数y=h(x)的图象关于原点对称;②函数y=h(x)为偶函数;③函数y=h(x)的最小值为0;④函数y=h(x)在(0,1)上为增函数其中,正确结论的序号为②③④.(将你认为正确结论的序号都填上)【解答】解:∵函数f(x)=()x的图象与函数y=g(x)的图象关于直线y=x对称,∴g(x)=,∴h(x)=g(1﹣x2)=,故h(﹣x)=h(x),即函数为偶函数,函数图象关于y轴对称,小明文库页(共15页)故①错误;②正确;当x=0时,函数取最小值0,故③正确;当x∈(0,1)时,内外函数均为减函数,故函数y=h(x)在(0,1)上为增函数,故④正确;故答案为:②③④二、选择题(本大题满分20分,每小题4分,共6小题)12.(4分)设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k﹣1,k∈Z},则A∩(∁UB)=()A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.∅【解答】解:全集U=Z,集合A={x|1≤x<7,x∈Z}={1,2,3,4,5,6}B={x=2k﹣1,k∈Z},∴∁uB={x=2k,k∈Z},∴A∩(∁uB)={2,4,6},故选:C.13.(4分)设x∈R,则“x<﹣2”是“x2+x≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由“x2+x≥0”,解得:x>0或x<﹣1,故x<﹣2”是“x>0或x<﹣1“的充分不必要条件,故选:A.14.(4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|B.y=()xC.y=D.y=﹣x3【解答】解:对于A:y=f(x)=|x|,则f(﹣x)=|﹣x|=|x|是偶函数.对于B:,根据指数函数的性质可知,是减函数.不是奇函数.对于C:定义为(﹣∞,0)∪(0,+∞),在其定义域内不连续,承载断点,小明文库页(共15页)∴在(﹣∞,0)和在(0,+∞)是减函数.对于D:y=f(x)=﹣x3,则f(﹣x)=x3=﹣f(x)是奇函数,根据幂函数的性质可知,是减函数.故选D.15.(4分)设x,y∈R,a>1,b>1,若ax=by=3,a+b=6,则+的最大值为()A.B.C.1D.2【解答】解:设x,y∈R,a>1,b>1,ax=by=3,a+b=6,∴x=loga3,y=logb3,∴+=log3a+log3b=log3ab≤log3()=2,当且仅当a=b=3时取等号,故选:D16.(4分)设集合M=[0,),N=[,1],函数f(x)=.若x0∈M且f(f(x0))∈M,则x0的取值范围为()A.(0,]B.[0,]C.(,]D.(,)【解答】解:∵0≤x0<,∴f(x0))∈[,1]
本文标题:20162017学年上海市虹口区高一上期末数学试卷
链接地址:https://www.777doc.com/doc-6814016 .html