您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20162017学年广东省东莞市高一上期末数学试卷a卷
小明文库页(共17页)2016-2017学年广东省东莞市高一(上)期末数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩∁UB=()A.{3,6}B.{5}C.{2,4}D.{2,5}2.(5分)若直线经过两点A(m,2),B(﹣m,2m﹣1)且倾斜角为45°,则m的值为()A.B.1C.2D.3.(5分)函数f(x)=x3+lnx﹣2零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.(5分)一梯形的直观图是如图是欧式的等腰梯形,且直观图OA′B′C′的面积为2,则原梯形的面积为()A.2B.2C.4D.45.(5分)已知a=,b=20.4,c=0.40.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a6.(5分)过点P(3,2)且在两坐标轴上的截距相等的直线方程是()A.x﹣y﹣1=0B.x+y﹣5=0或2x﹣3y=0C.x+y﹣5=0D.x﹣y﹣1=0或2x﹣3y=07.(5分)已知函数f(x)=,若对于任意的两个不相等实数x1,x2都有>0,则实数a的取值范围是()A.(1,6)B.(1,+∞)C.(3,6)D.[3,6)8.(5分)如图正方体ABCD﹣A1B1C1D1,M,N分别为A1D1和AA1的中点,则下小明文库页(共17页)列说法中正确的个数为()①C1M∥AC;②BD1⊥AC;③BC1与AC的所成角为60°;④B1A1、C1M、BN三条直线交于一点.A.1B.2C.3D.49.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3B.4C.5D.710.(5分)直线l过点A(﹣1,﹣2),且不经过第四象限,则直线l的斜率的取值范围为()A.(0,]B.[2,+∞)C.(0,2]D.(﹣∞,2]11.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的某多面体的三视图,则该多面体的体积为()A.8B.C.D.12.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一小明文库页(共17页)个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=+的定义域为.14.(5分)已知幂函数y=f(x)的图象经过点(,),则lg[f(2)]+lg[f(5)]=.15.(5分)若某圆锥的母线长为2,侧面展开图为一个半圆,则该圆锥的表面积为.16.(5分)若直线l1:x+ky+1=0(k∈R)与l2:(m+1)x﹣y+1=0(m∈R)相互平行,则这两直线之间距离的最大值为.三、解答题:本大题共6小题,共70分.解答写出文字说明、证明过程或演算过程.17.(10分)已知集合A={x|log2x>m},B={x|﹣4<x﹣4<4}.(1)当m=2时,求A∪B,A∩B;(2)若A⊆∁RB,求实数m的取值范围.18.(12分)已知f(x)为定义在R上的奇函数,且当x≥0时,f(x)=x2﹣(a+4)x+a.(1)求实数a的值及f(x)的解析式;(2)求使得f(x)=x+6成立的x的值.19.(12分)已知两条直线l1:2x+y﹣2=0与l2:2x﹣my+4=0.(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;(2)若l1,l2以及x轴围成三角形的面积为1,求实数m的值.20.(12分)如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面小明文库页(共17页)相交于CD,AE⊥平面CDE,且AE=1.(1)求证:AB∥平面CDE;(2)求证:DE⊥平面ABE;(3)求点A到平面BDE的距离.21.(12分)春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:天数x(天)3579111315日经济收入Q(万元)154180198208210204190(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明.①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.22.(12分)已知函数f(x)=x+﹣1(x≠0),k∈R.(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;(3)当k∈R时,试讨论f(x)的零点个数.小明文库页(共17页)2016-2017学年广东省东莞市高一(上)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩∁UB=()A.{3,6}B.{5}C.{2,4}D.{2,5}【解答】解:∵U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},∴∁UB={5},则A∩∁UB={5},故选:B2.(5分)若直线经过两点A(m,2),B(﹣m,2m﹣1)且倾斜角为45°,则m的值为()A.B.1C.2D.【解答】解:经过两点A(m,2),B(﹣m,2m﹣1)的直线的斜率为k=.又直线的倾斜角为45°,∴=tan45°=1,即m=.故选:A.3.(5分)函数f(x)=x3+lnx﹣2零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解答】解:∵函数f(x)=x3+lnx﹣2,定义域为:x>0;函数是连续函数,∴f(1)=1﹣2<0,f(2)=6+ln2>0,小明文库页(共17页)∴f(2)•f(1)<0,根据函数的零点的判定定理,故选:B.4.(5分)一梯形的直观图是如图是欧式的等腰梯形,且直观图OA′B′C′的面积为2,则原梯形的面积为()A.2B.2C.4D.4【解答】解:把该梯形的直观图还原为原来的梯形,如图所示;设该梯形的上底为a,下底为b,高为h,则直观图中等腰梯形的高为h′=hsin45°;∵等腰梯形的体积为(a+b)h′=(a+b)•hsin45°=2,∴(a+b)•h==4∴该梯形的面积为4.故选:D.5.(5分)已知a=,b=20.4,c=0.40.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解答】解:∵a=∈(0,1),b=20.4>20=1,c=0.40.2∈(0,1),故a、b、c中,b最大.由于函数y=0.4x在R上是减函数,故=0.40.5<0.40.2<0.40=1,∴1>c>a.故有b>c>a,故选A.小明文库页(共17页)6.(5分)过点P(3,2)且在两坐标轴上的截距相等的直线方程是()A.x﹣y﹣1=0B.x+y﹣5=0或2x﹣3y=0C.x+y﹣5=0D.x﹣y﹣1=0或2x﹣3y=0【解答】解:当横截距a=0时,纵截距b=a=0,此时直线方程过点P(3,2)和原点(0,0),直线方程为:,整理,得2x﹣3y=0;当横截距a≠0时,纵截距b=a,此时直线方程为,把P(3,2)代入,得:,解得a=5,∴直线方程为,即x+y﹣5=0.∴过点P(3,2)且在两坐标轴上的截距相等的直线方程是x+y﹣5=0或2x﹣3y=0.故选:B.7.(5分)已知函数f(x)=,若对于任意的两个不相等实数x1,x2都有>0,则实数a的取值范围是()A.(1,6)B.(1,+∞)C.(3,6)D.[3,6)【解答】解:对于任意的两个不相等实数x1,x2都有>0,可知函数是增函数,可得:,解得a∈[3,6).故选:D.8.(5分)如图正方体ABCD﹣A1B1C1D1,M,N分别为A1D1和AA1的中点,则下小明文库页(共17页)列说法中正确的个数为()①C1M∥AC;②BD1⊥AC;③BC1与AC的所成角为60°;④B1A1、C1M、BN三条直线交于一点.A.1B.2C.3D.4【解答】解:∵正方体ABCD﹣A1B1C1D1,M,N分别为A1D1和AA1的中点,∴A1C1∥AC,C1M与A1C1相交,故①错误;BD⊥AC,DD1⊥AC,故AC⊥平面BDD1,故BD1⊥AC,故②正确;、连接BA1,则△A1BC1为等边三角形,即BC1与A1C1的所成角为60°;由①中A1C1∥AC,可得BC1与AC的所成角为60°,故③正确;④由MN∥AD1∥BC1,可得C1M、BN共面,则C1M、BN必交于一点,且该交点,必在B1A1上,故B1A1、C1M、BN三条直线交于一点,故④正确;故选:C9.(5分)如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3B.4C.5D.7【解答】解:定义在[﹣2,2]的偶函数f(x)的图象如图:函数是偶函数,函数的值域为:f(x)∈[﹣2,1],函数的零点为:x1,0,x2,小明文库页(共17页)x1∈(﹣2,﹣1),x2∈(1,2),令t=f(x),则f(f(x))=0,即f(t)=0可得,t=x1,0,x2,f(x)=x1∈(﹣2,﹣1)时,存在f[f(x1)]=0,此时方程的根有2个.x2∈(1,2)时,不存在f[f(x2)]=0,方根程没有根.f[f(0)]=f(0)=f(x1)=f(x2)=0,有3个.所以方程f(f(x))=0的实根个数为:5个.故选:C.10.(5分)直线l过点A(﹣1,﹣2),且不经过第四象限,则直线l的斜率的取值范围为()A.(0,]B.[2,+∞)C.(0,2]D.(﹣∞,2]【解答】解:∵直线l过点A(﹣1,﹣2),∴kOA=2,又直线l不经过第四象限,∴直线l的斜率的取值范围为[2,+∞),故选:B.11.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的某多面体的三视图,则该多面体的体积为()A.8B.C.D.【解答】解:由已知中的三视图可得:该几何体是一个以侧视图为底面的四棱锥,小明文库页(共17页)底面面积S=2×2=4,高h=2,故体积V==,故选:C12.(5分)定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是()A.1个B.2个C.3个D.4
本文标题:20162017学年广东省东莞市高一上期末数学试卷a卷
链接地址:https://www.777doc.com/doc-6814040 .html