您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 题型练5高中数学大题专项三统计与概率问题
1题型练5大题专项(三)统计与概率问题题型练第66页一、解答题1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.解:(1)由已知,有P(A)=所以,事件A发生的概率为(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=-(k=1,2,3,4).所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)=1+2+3+42.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,用“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D(ξ1),D(ξ2),D(ξ3),D(ξ4),D(ξ5),D(ξ6)的大小关系.解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A,第四类电影中获得好评的电影为200×0.25=50(部).P(A)==0.025.2(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B,P(B)=0.25×0.8+0.75×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk={第类电影没有得到人们喜欢第类电影得到人们喜欢则ξk显然服从两点分布,则六类电影的分布列及方差计算如下:第一类电影:ξ110P0.40.6D(ξ1)=0.4×0.6=0.24;第二类电影:ξ210P0.20.8D(ξ2)=0.2×0.8=0.16;第三类电影:ξ310P0.150.85D(ξ3)=0.15×0.85=0.1275;第四类电影:ξ410P0.250.75D(ξ4)=0.25×0.75=0.1875;第五类电影:ξ510P0.20.8D(ξ5)=0.2×0.8=0.16;第六类电影:ξ610P0.10.9D(ξ6)=0.1×0.9=0.09.综上所述,D(ξ1)D(ξ4)D(ξ2)=D(ξ5)D(ξ3)D(ξ6).3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;3(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=因此所求概率为(3)记续保人本年度的保费为X,则X的分布列为X0.85aa1.25a1.5a1.75a2aP0.300.150.200.200.100.05E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2019北京,理17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额/元(0,1000](1000,2000]大于2000支付方式仅使用A18人9人3人仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.解:(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40人.所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为=0.4.(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C,D相互独立,4且P(C)==0.4,P(D)==0.6.所以P(X=2)=P(CD)=P(C)P(D)=0.24,P(X=1)=P(CD)=P(C)P()+P()P(D)=0.4×(1-0.6)+(1-0.4)×0.6=0.52,P(X=0)=P()=P()P()=0.24.所以X的分布列为X012P0.240.520.24故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E)=答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.5.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:(1)X可能的取值为10,20,100,-200.根据题意,P(X=10)=()(-);P(X=20)=()(-);P(X=100)=()(-);5P(X=-200)=()(-)所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=所以,“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-()=1-因此,玩三盘游戏至少有一盘出现音乐的概率是(3)X的数学期望为E(X)=10+20+100-200=-这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大.6.某汽车公司拟对甲款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(单位:亿元)与科技改造直接收益y(单位:亿元)的数据统计如下:x2346810132122232425y1322314250565868.56867.56666当0x≤17时,建立了y与x的两个回归模型:模型①:=4.1x+11.8;模型②:=21.3√-14.4;当x17时,确定y与x满足的线性回归方程为=-0.7x+a.(1)根据下列表格中的数据,比较当0x≤17时模型①、②的相关指数R2,并选择拟合精度更高、更可靠的模型,预测对甲款汽车发动机科技改造的投入为17亿元时的直接收益.回归模型模型①模型②回归方程=4.1x+11.8=21.3√-14.4182.479.2(附相关指数√)(2)为鼓励科技创新,当科技改造投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小.6附:用最小二乘法求线性回归方程x+的系数公式-----(3)科技改造后,甲款汽车发动机的热效率X大幅提高,X服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,则不予奖励;若发动机的热效率超过50%但不超过53%,则每台发动机奖励2万元;若发动机的热效率超过53%,则每台发动机奖励5万元.求每台发动机获得奖励的数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σξμ+σ)≈0.6827,P(μ-2σξμ+2σ)≈0.9545)解:(1)由表格中的数据,可知--所以模型①的R2小于模型②的R2,说明回归模型②拟合的效果更好.所以当x=17亿元时,科技改造直接收益的预测值为=21.3√-14.4=21.3×4.1-14.4=72.93(亿元).(2)由已知可得-20==3,所以=23.又-60==7.2,所以=67.2.-----=-0.7,故+0.7=67.2+0.7×23=83.3.当x17亿元时,y与x满足的线性回归方程为=-0.7x+83.3.当x=20亿元时,科技改造直接收益的预测值=-0.7×20+83.3=69.3.当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元72.93亿元.所以科技改造投入20亿元时,公司的实际收益更大.(3)因为P(0.52-0.02X0.52+0.02)≈0.9545,所以P(X0.50)=0.97725,P(X≤0.50)-=0.02275,因为P(0.52-0.01X0.52+0.01)≈0.6827,所以P(X0.53)-=0.15865,则P(0.50X≤0.53)≈0.97725-0.15865=0.8186.7设每台发动机获得的奖励为Y万元,则Y的分布列为:Y025P0.022750.81860.15865所以每台发动机获得奖励的数学期望为E(Y)=0×0.0228+2×0.8186+5×0.15865=2.43045(万元).
本文标题:题型练5高中数学大题专项三统计与概率问题
链接地址:https://www.777doc.com/doc-6815166 .html