您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修选修全部知识点精华归纳总结新课标人教A版
-1-高中数学必修+选修知识点归纳新课标人教A版引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。选修课程有4个系列:系列1:由2个模块组成。选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。系列3:由6个专题组成。选修3—1:数学史选讲。选修3—2:信息安全与密码。选修3—3:球面上的几何。选修3—4:对称与群。选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。系列4:由10个专题组成。选修4—1:几何证明选讲。选修4—2:矩阵与变换。选修4—3:数列与差分。选修4—4:坐标系与参数方程。选修4—5:不等式选讲。选修4—6:初等数论初步。选修4—7:优选法与试验设计初步。选修4—8:统筹法与图论初步。选修4—9:风险与决策。选修4—10:开关电路与布尔代数。2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用-2-⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、只要构成两个集合的元素是一样的,就称这两个集合相等。3、常见集合:正整数集合:*N或N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作BA.2、如果集合BA,但存在元素Bx,且Ax,则称集合A是集合B的真子集.记作:AB.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有n2个子集,21n个真子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:BA.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:BA.3、全集、补集?{|,}UCAxxUxU且§1.2.1、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数xf和它对应,那么就称BAf:为集合A到集合B的一个函数,记作:Axxfy,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性的证明方法:(1)定义法:设2121],,[xxbaxx、那么],[)(0)()(21baxfxfxf在上是增函数;],[)(0)()(21baxfxfxf在上是减函数.步骤:取值—作差—变形—定号—判断格式:解:设baxx,,21且21xx,则:21xfxf=…(2)导数法:设函数)(xfy在某个区间内可导,若0)(xf,则)(xf为增函数;若0)(xf,则)(xf为减函数.§1.3.2、奇偶性1、一般地,如果对于函数xf的定义域内任意一个x,都有xfxf,那么就称函数xf为偶函数.偶函数图象关于y轴对称.2、一般地,如果对于函数xf的定义域内任意一个x,都有xfxf,那么就称函数xf为奇函数.奇函数图象关于原点对称.知识链接:函数与导数1、函数)(xfy在点0x处的导数的几何意义:函数)(xfy在点0x处的导数是曲线)(xfy在))(,(00xfxP处的切线的斜率)(0xf,相应的切线方程是))((000xxxfyy.2、几种常见函数的导数-3-①'C0;②1')(nnnxx;③xxcos)(sin';④xxsin)(cos';⑤aaaxxln)(';⑥xxee')(;⑦axxaln1)(log';⑧xx1)(ln'3、导数的运算法则(1)'''()uvuv.(2)'''()uvuvuv.(3)'''2()(0)uuvuvvvv.4、复合函数求导法则复合函数(())yfgx的导数和函数(),()yfuugx的导数间的关系为xuxyyu,即y对x的导数等于y对u的导数与u对x的导数的乘积.解题步骤:分层—层层求导—作积还原.5、函数的极值(1)极值定义:极值是在0x附近所有的点,都有)(xf<)(0xf,则)(0xf是函数)(xf的极大值;极值是在0x附近所有的点,都有)(xf>)(0xf,则)(0xf是函数)(xf的极小值.(2)判别方法:①如果在0x附近的左侧)('xf>0,右侧)('xf<0,那么)(0xf是极大值;②如果在0x附近的左侧)('xf<0,右侧)('xf>0,那么)(0xf是极小值.6、求函数的最值(1)求()yfx在(,)ab内的极值(极大或者极小值)(2)将()yfx的各极值点与(),()fafb比较,其中最大的一个为最大值,最小的一个为极小值。注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。第二章:基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果axn,那么x叫做a的n次方根。其中Nnn,1.2、当n为奇数时,aann;当n为偶数时,aann.3、我们规定:⑴mnmnaa1,,,0*mNnma;⑵01naann;4、运算性质:⑴Qsraaaasrsr,,0;⑵Qsraaarssr,,0;⑶Qrbabaabrrr,0,0.§2.1.2、指数函数及其性质1、记住图象:1,0aaayx2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:logxaaNxN;2、对数恒等式:logaNaN.1a10a图象654321-1-4-224601654321-1-4-224601性质(1)定义域:R(2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)在R上是增函数(4)在R上是减函数(5)0,1xxa;0,01xxa(5)0,01xxa;0,1xxa0a1a11y=axoyx-4-3、基本性质:01loga,1logaa.4、运算性质:当0,0,1,0NMaa时:⑴NMMNaaalogloglog;⑵NMNMaaalogloglog;⑶MnManaloglog.5、换底公式:abbccalogloglog0,1,0,1,0bccaa.6、重要公式:loglognmaambbn7、倒数关系:abbalog1log1,0,1,0bbaa.§2..2.2、对数函数及其性质1、记住图象:1,0logaaxya2、性质:§2.3、幂函数1、几种幂函数的图象:第三章:函数的应用§3.1.1、方程的根与函数的零点1、方程0xf有实根函数xfy的图象与x轴有交点函数xfy有零点.2、零点存在性定理:如果函数xfy在区间ba,上的图象是连续不断的一条曲线,并且有0bfaf,那么函数xfy在区间ba,内有零点,即存在bac,,使得0cf,这个c也就是方程0xf的根.§3.1.2、用二分法求方程的近似解1、掌握二分法.§3.2.1、几类不同增长的函数模型§3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。1a10a图象32.521.510.5-0.5-1-1.5-2-2.5-11234567801132.521.510.5-0.5-1-1.5-2-2.5-112345678011性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数(5)0log,1xxa;0log,10xxa(5)0log,1xxa;0log,10xxa0a1a11y=logaxoyx-5-2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的表面积与体积⑴圆柱侧面积;lrS2侧面⑵圆锥侧面积:lrS侧面⑶圆台侧面积:lRlrS侧面⑷体积公式:hSV柱体;hSV31锥体;hSSSSV下下上上台体31⑸球的表面积和体积:32344RVRS球球,.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则
本文标题:高中数学必修选修全部知识点精华归纳总结新课标人教A版
链接地址:https://www.777doc.com/doc-6815263 .html