您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 解三角形常见题型归纳
解三角形常见题型归纳正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。题型之一:求解斜三角形中的基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.1.在ABC中,AB=3,AC=2,BC=10,则ABAC()A.23B.32C.32D.23【答案】D2.(1)在ABC中,已知032.0A,081.8B,42.9acm,解三角形;(2)在ABC中,已知20acm,28bcm,040A,解三角形(角度精确到01,边长精确到1cm)。3.(1)在ABC中,已知23a,62c,060B,求b及A;(2)在ABC中,已知134.6acm,87.8bcm,161.7ccm,解三角形4(2005年全国高考江苏卷)ABC中,3A,BC=3,则ABC的周长为()A.33sin34BB.36sin34BC.33sin6BD.36sin6B分析:由正弦定理,求出b及c,或整体求出b+c,则周长为3+b+c而得到结果.选(D).5(2005年全国高考湖北卷)在ΔABC中,已知66cos,364BAB,AC边上的中线BD=5,求sinA的值.分析:本题关键是利用余弦定理,求出AC及BC,再由正弦定理,即得sinA.解:设E为BC的中点,连接DE,则DE//AB,且36221ABDE,设BE=x奎屯王新敞新疆在ΔBDE中利用余弦定理可得:BEDEDBEEDBEBDcos2222,xx6636223852,解得1x,37x(舍去)奎屯王新敞新疆故BC=2,从而328cos2222BBCABBCABAC,即3212AC奎屯王新敞新疆又630sinB,故22123sin306A,1470sinA奎屯王新敞新疆在△ABC中,已知a=2,b=22,C=15°,求A。答案:000018030BAAA∴,且,∴题型之二:判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.1.(2005年北京春季高考题)在ABC中,已知CBAsincossin2,那么ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形解法1:由CBAsincossin2=sin(A+B)=sinAcosB+cosAsinB,即sinAcosB-cosAsinB=0,得sin(A-B)=0,得A=B.故选(B).解法2:由题意,得cosB=sin2sin2CcAa,再由余弦定理,得cosB=2222acbac.∴2222acbac=2ca,即a2=b2,得a=b,故选(B).评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判断(如解法2).2.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosB=sin(A+B)+sin(A-B)又∵2sinAcosB=sinC,∴sin(A-B)=0,∴A=B3.在△ABC中,若abAB22tantan,试判断△ABC的形状。答案:故△ABC为等腰三角形或直角三角形。4.在△ABC中,coscosAb,判断△ABC的形状。答案:△ABC为等腰三角形或直角三角形。题型之三:解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.1.(2005年全国高考上海卷)在ABC中,若120A,5AB,7BC,则ABC的面积S=_________奎屯王新敞新疆2.在ABC中,sincosAA22,AC2,AB3,求Atan的值和ABC的面积。答案:SACABAABC1212232643426sin()3.(07浙江理18)已知ABC△的周长为21,且sinsin2sinABC.(I)求边AB的长;(II)若ABC△的面积为1sin6C,求角C的度数.解:(I)由题意及正弦定理,得21ABBCAC,2BCACAB,两式相减,得1AB.(II)由ABC△的面积11sinsin26BCACCC,得13BCAC,由余弦定理,得222cos2ACBCABCACBC22()2122ACBCACBCABACBC,所以60C.题型之四:三角形中求值问题1.(2005年全国高考天津卷)在ABC中,CBA、、所对的边长分别为cba、、,设cba、、满足条件222abccb和321bc,求A和Btan的值.分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.解:由余弦定理212cos222bcacbA,因此,60A在△ABC中,∠C=180°-∠A-∠B=120°-∠B.由已知条件,应用正弦定理BBBCbcsin)120sin(sinsin321,21cot23sinsin120coscos120sinBBBB解得,2cotB从而.21tanB2.ABC的三个内角为ABC、、,求当A为何值时,cos2cos2BCA取得最大值,并求出这个最大值。解析:由A+B+C=π,得B+C2=π2-A2,所以有cosB+C2=sinA2。cosA+2cosB+C2=cosA+2sinA2=1-2sin2A2+2sinA2=-2(sinA2-12)2+32;当sinA2=12,即A=π3时,cosA+2cosB+C2取得最大值为32。3.在锐角ABC△中,角ABC,,所对的边分别为abc,,,已知22sin3A,(1)求22tansin22BCA的值;(2)若2a,2ABCS△,求b的值。解析:(1)因为锐角△ABC中,A+B+C=,22sin3A,所以cosA=13,则22222BCsinBCAA2tansinsinBC222cos21cosBC11cosA171cosA1cosBC21cosA33+++=++-(+)+=+(-)=+=+(+)-(2)ABCABC1122S2SbcsinAbc223因为=,又==,则bc=3。将a=2,cosA=13,c=3b代入余弦定理:222abc2bccosA=+-中,得42b6b90-+=解得b=3。点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。4.在ABC△中,内角ABC,,对边的边长分别是abc,,,已知2c,3C.(Ⅰ)若ABC△的面积等于3,求ab,;(Ⅱ)若sinsin()2sin2CBAA,求ABC△的面积.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224abab,又因为ABC△的面积等于3,所以1sin32abC,得4ab.························4分联立方程组2244ababab,,解得2a,2b.··············································6分(Ⅱ)由题意得sin()sin()4sincosBABAAA,即sincos2sincosBAAA,·········································································8分当cos0A时,2A,6B,433a,233b,当cos0A时,得sin2sinBA,由正弦定理得2ba,联立方程组2242ababba,,解得233a,433b.所以ABC△的面积123sin23SabC.·················12分题型之五:正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下:(一.)测量问题1.如图1所示,为了测河的宽度,在一岸边选定A、B两点,望对岸标记物C,测得∠CAB=30°,∠CBA=75°,AB=120cm,求河的宽度。分析:求河的宽度,就是求△ABC在AB边上的高,而在河的一边,已测出AB长、∠CAB、∠CBA,这个三角形可确定。解析:由正弦定理得sinsinACABCBAACB,∴AC=AB=120m,又∵11sin22ABCSABACCABABCD,解得CD=60m。点评:虽然此题计算简单,但是意义重大,属于“不过河求河宽问题”。(二.)遇险问题2某舰艇测得灯塔在它的东15°北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30°北。若此灯塔周围10海里内有暗礁,问此舰艇继续向东航行有无触礁的危险?解析:如图舰艇在A点处观测到灯塔S在东15°北的方向上;舰艇航行半小时后到达B点,测得S在东30°北的方向上。在△ABC中,可知AB=30×0.5=15,∠ABS=150°,∠ASB=15°,由正弦定理得BS=AB=15,过点S作SC⊥直线AB,垂足为C,则SC=15sin30°=7.5。这表明航线离灯塔的距离为7.5海里,而灯塔周围10海里内有暗礁,故继续航行有触礁的危险。点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理求解。(三.)追击问题3如图3,甲船在A处,乙船在A处的南偏东45°图1ABCD西北南东ABC30°15°图2图3ABC北45°15°方向,距A有9nmile并以20nmile/h的速度沿南偏西15°方向航行,若甲船以28nmile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?解析:设用th,甲船能追上乙船,且在C处相遇。在△ABC中,AC=28t,BC=20t,AB=9,设∠ABC=α,∠BAC=β。∴α=180°-45°-15°=120°。根据余弦定理2222cosACABBCABBC,2212881202920()2ttt,212860270tt,(4t-3)(32t+9)=0,解得t=34,t=932(舍)∴AC=28×34=21nmile,BC=20×34=15nmile。根据正弦定理,得315sin532sin2114BCAC,又∵α=120°,∴β为锐角,β=arcsin5314,又5314<7214<22,∴arcsin5314<4,∴甲船沿南偏东4-arcsin5314的方向用34h可以追上乙船。点评:航海问题常涉及到解三角形的知识,本题中的∠ABC、AB边已知,另两边未知,但他们都是航行的距离,由于两船的航行速度已知,所以,这两边均与时间t有关。这样根据余弦定理,可列出关于t的一元二次方程,解出t的值。4.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?解析:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.于是,BC=107。∵710120sin20sinACB,∴sin∠ACB=73,∵∠ACB90°,∴∠ACB=41°。∴乙船应朝北偏东71°方向沿直线前往B处救援。公司档案管理制度一、总则北2010AB••C1、为加强本公司档案工作,充分发挥档案作用,全面提高档
本文标题:解三角形常见题型归纳
链接地址:https://www.777doc.com/doc-6818015 .html