您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 2020新高考数学理二轮专题培优新方案主攻40个必考点练习数列考点过关检测八解析
考点过关检测(八)1.(2019·天津六校联考)若数列{an}中,a1=3,an+an-1=4(n≥2),则a2019的值为()A.1B.2C.3D.4解析:选C∵a1=3,an+an-1=4(n≥2),∴an+1+an=4,∴an+1=an-1,an=an+2,即该数列的奇数项、偶数项分别相等.∵a1=3,∴a2019=3.故选C.2.(2019·菏泽期中)已知数列{an}的前n项和为Sn=2n-1,bn=an+2n-1,则bn=()A.2n-1+n2-1B.2n-1+2n-1C.2n+2n-1D.2n-1+n2+1解析:选B由Sn=2n-1,得当n≥2时,Sn-1=2n-1-1,Sn-Sn-1=an=2n-2n-1=2n-1,又a1=21-1=1适合上式,∴an=2n-1(n∈N*),∴bn=2n-1+2n-1.故选B.3.(2019·银川月考)在数列{an}中,a1=1,3an+1=1+1n2an(n∈N*),则数列{an}的通项公式为()A.an=n23n-1B.an=n2+33n+1C.an=4n2+23n+1D.an=n2+13n-1解析:选A由题意得an+1n+12=13·ann2.又n=1时,ann2=1,故数列ann2是首项为1,公比为13的等比数列.从而ann2=13n-1,即an=n23n-1.故选A.4.(2020届高三·天津六校联考)数列{an}满足a1=2,an+1=a2n(an>0),则an=()A.10n-2B.10n-1C.102n-1D.22n-1解析:选D因为数列{an}满足a1=2,an+1=a2n(an>0),所以log2an+1=2log2an⇒log2an+1log2an=2.又n=1时,log2a1=1,所以{log2an}是首项为1,公比为2的等比数列,所以log2an=2n-1,即an=22n-1,故选D.5.(2019·上海期中)已知数列{an}的前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n≥2),a1=1,则an=()A.nB.2n-1C.n2D.2n2-1解析:选B由Sn-Sn-1=Sn+Sn-1,得(Sn+Sn-1)(Sn-Sn-1)=Sn+Sn-1,∴Sn-Sn-1=1,∴数列{Sn}是一个首项为1,公差为1的等差数列.∴Sn=1+(n-1)×1=n,∴Sn=n2.当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.a1=1适合上式,∴an=2n-1.故选B.6.(2019·海口月考)已知数列{an}满足a1=33,an+1-ann=2,则ann的最小值为()A.10.5B.10C.9D.8解析:选A由an+1-ann=2变形得an+1-an=2n,∴an=(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)+a1=2+4+6+…+2(n-1)+a1=2n-11+n-12+33=n2-n+33,∴ann=n2-n+33n=n+33n-1(n∈N*).当n∈(0,33)时,ann单调递减;当n∈(33,+∞)时,ann单调递增.又n∈N*,经验证n=6时,ann最小,为10.5.故选A.7.在数列{an}中,a1=1,a2=2,若an+2=2an+1-an+2,则an=________.解析:由题意得(an+2-an+1)-(an+1-an)=2,因此数列{an+1-an}是以1为首项,2为公差的等差数列,an+1-an=1+2(n-1)=2n-1,当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+1+3+…+(2n-3)=1+1+2n-3n-12=(n-1)2+1=n2-2n+2,又a1=1=12-2×1+2,因此an=n2-2n+2.答案:n2-2n+28.(2019·揭阳期末)已知数列{an}满足a1=-19,an+1=an8an+1(n∈N*),则an=________,数列{an}中最大项的值为________.解析:由题意知an≠0,则由an+1=an8an+1,得1an+1=8an+1an=1an+8,整理得1an+1-1an=8,即数列1an是公差为8的等差数列,故1an=1a1+(n-1)×8=8n-17,所以an=18n-17.当n=1,2时,an0;当n≥3时,an0,且数列{an}在n≥3时是递减数列,故{an}中最大项的值为a3=17.答案:18n-17179.(2019·太原模拟)数列{an}中,a1=0,an-an-1-1=2(n-1)(n∈N*,n≥2),若数列{bn}满足bn=n·an+1+1·811n-1,则数列{bn}的最大项为第________项.解析:由a1=0,an-an-1=2n-1,可得an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=0+3+5+…+(2n-1)=12(n-1)(3+2n-1)=n2-1,若数列{bn}满足bn=n·an+1+1·811n-1,即有bn=n(n+1)·811n-1,可得bn+1bn=n+2n·811.由bn+1bn>1可得n<163,由n为整数,可得1≤n≤6时,bn递增,且n>6时,bn递减,可得b6为最大项.答案:610.已知数列{an}中,a1=3,{an}的前n项和Sn满足Sn+1=an+n2.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=(-1)n+2an,求{bn}的前n项和Tn.解:(1)由Sn+1=an+n2,①得Sn+1+1=an+1+(n+1)2,②则②-①得an=2n+1.当n=1时,a1=3满足上式,所以数列{an}的通项公式为an=2n+1.(2)由(1)得bn=(-1)n+22n+1,所以Tn=b1+b2+…+bn=[(-1)+(-1)2+…+(-1)n]+(23+25+…+22n+1)=-1×[1--1n]1--1+23×1-4n1-4=-1n-12+83(4n-1).11.(2019·重庆月考)已知数列{an}满足a1=-2,anan-1=2nn-1(n≥2,n∈N*).(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.解:(1)由题可得,a2a1=2×21,a3a2=2×32,a4a3=2×43,…,anan-1=2×nn-1(n≥2,n∈N*),以上式子左右分别相乘得ana1=2n-1·n(n≥2,n∈N*),把a1=-2代入,得an=-2n·n(n≥2,n∈N*),又a1=-2符合上式,故数列{an}的通项公式为an=-2n·n(n∈N*).(2)由(1)得Sn=-(1×2+2×22+…+n·2n),则2Sn=-[1×22+2×23+…+(n-1)·2n+n·2n+1],两式相减,得Sn=2+22+23+…+2n-n·2n+1=2n+1-2-n·2n+1=(1-n)·2n+1-2(n∈N*).
本文标题:2020新高考数学理二轮专题培优新方案主攻40个必考点练习数列考点过关检测八解析
链接地址:https://www.777doc.com/doc-6821975 .html