您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2020届高考数学理科数学专题09导数及其应用
理科数学专题09--导数及其应用1.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.2.若是函数的极值点,则的极小值为().A.B.C.D.【答案】A【解析】由题可得,因为,所以,,故,令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A.【名师点睛】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.3.已知函数有唯一零点,则a=A.B.C.D.1【答案】C【解析】【解析】,设,,当时,,当时,函数单调递减,当时,,函数单调递增,当时,函数取得最小值,设,当时,函数取得最小值-1,若,函数,和没有交点,当时,时,此时函数和有一个交点,即,故选C.4.设函数=,其中a1,若存在唯一的整数,使得0,则的取值范围是()A.[-,1)B.[-,)C.[,)D.[,1)【答案】D【解析】设g(x)=ex(2x−1),y=ax−a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax−a的下方,∵g′(x)=ex(2x−1)+2ex=ex(2x+1),∴当时,g′(x)0,当时,g′(x)0,∴当时,g(x)取最小值,当x=0时,g(0)=−1,当x=1时,g(1)=e0,直线y=ax−a恒过定点(1,0)且斜率为a,故−ag(0)=−1且g(−1)=−3e−1⩾−a−a,解得本题选择D选项.5.设函数是奇函数()的导函数,,当时,,则使得成立的的取值范围是()A.B.C.D.【答案】A【解析】构造新函数,,当时.所以在上单减,又,即.所以可得,此时,又为偶函数,所以在上的解集为:.故选B.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如,想到构造.一般:(1)条件含有,就构造,(2)若,就构造,(3),就构造,(4)就构造,等便于给出导数时联想构造函数.6.已知函数,若存在唯一的零点,且,则的取值范围是A.B.C.D.【答案】C【解析】试题分析:当时,,函数有两个零点和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C.考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性.7.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【答案】B【解析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.考点:利用导数研究曲线上某点切线方程.8.函数f(x)=在[—π,π]的图像大致为A.B.C.D.【答案】D【解析】【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.【详解】由,得是奇函数,其图象关于原点对称.又.故选D.【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.9.已知曲线在点处的切线方程为,则()A.B.C.D.【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.【详解】详解:,将代入得,故选D.【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系。10.函数在的图像大致为A.B.C.D.【答案】B【解析】【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.11.已知函数.(1)讨论的单调性;(2)若存在两个极值点,证明:.【答案】(1)见解析;(2)见解析【解析】分析:(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.12.已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.【答案】(1)见解析;(2)【解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式,(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.13.已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.【答案】(1)见解析(2)【解析】分析:(1)求导,利用函数单调性证明即可。(2)分类讨论和,构造函数,讨论的性质即可得到a的范围。详解:(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。14.已知函数ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.【答案】(1)见解析;(2).【解析】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减.(ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为.①当时,由于,故只有一个零点;②当时,由于,即,故没有零点;③当时,,即.又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点.综上,的取值范围为.点睛:研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数有2个零点求参数a的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断与其交点的个数,从而求出a的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.15.已知函数且.(1)求a;(2)证明:存在唯一的极大值点,且.【答案】(1)a=1;(2)见解析.【解析】【分析】(1)通过分析可知f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,进而利用h′(x)=a可得h(x)min=h(),从而可得结论;(2)通过(1)可知f(x)=x2﹣x﹣xlnx,记t(x)=f′(x)=2x﹣2﹣lnx,解不等式可知t(x)min=t()=ln2﹣1<0,从而可知f′(x)=0存在两根x0,x2,利用f(x)必存在唯一极大值点x0及x0可知f(x0),另一方面可知f(x0)>f().【详解】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x时h′(x)<0、当x时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以1,解得a=1;另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),所以等价于f(x)在x=1处是极小值,所以解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2,令t′(x)=0,解得:x,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)x0﹣x0lnx0x0+2x0﹣2x0,由x0可知f(x0)<(x0)max;由f′()<0可知x0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f();综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.16.已知函数=x﹣1﹣alnx.(1)若,求a的值;(2)设m为整数,且对于任意正整数n,﹤m,求m的最小值.【答案】(1)见解析(2)【解析】(1)的定义域为.①若,因为,所以
本文标题:2020届高考数学理科数学专题09导数及其应用
链接地址:https://www.777doc.com/doc-6824296 .html