您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 几何最值—轴对称求最值(含答案)
第1页共10页学生做题前请先回答以下问题问题1:几何最值问题的理论依据是什么?答:两点之间,________________;(已知两个定点)_______________最短(已知一个定点、一条定直线);三角形____________________(已知两边长固定或其和、差固定).答:问题2:做题前,读一读,背一背:答:直线L及异侧两点AB求作直线L上一点P,使P与AB两点距离之差最大作A点关于L的对称点A1,连接A1B,并延长交L的一点就是所求的P点.这样就有:PA=PA1,P点与A,B的差PA-PB=PA1-PB=A1B.下面证明A1B是二者差的最大值.首先在L上随便取一个不同于P点的点P1,这样P1A1B就构成一三角形,且P1A1=P1A.根据三角形的性质,二边之差小于第三边,所以有:P1A1-P1BA1B,即:p1A-p1BA1B.这就说明除了P点外,任何一个点与A,B的距离差都小于A1B.反过来也说明P点与A,B的距离差的最大值是A1B.所以,P点就是所求的一点.第2页共10页几何最值—轴对称求最值一、单选题(共7道,每道14分)1.如图,正方形ABCD的面积为12,△ABE是等边三角形,且点E在正方形ABCD的内部,在对角线AC上存在一点P,使得PD+PE的值最小,则这个最小值为()A.3B.C.D.答案:C解题思路:第3页共10页试题难度:三颗星知识点:轴对称—线段之和最小2.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.AB=10cm,BC=6cm,P是直线DE上的一点,连接PC,PB,则△PBC周长的最小值为()A.16cmB.cmC.24cmD.26cm答案:A解题思路:第4页共10页试题难度:三颗星知识点:轴对称—线段之和最小3.如图,A,B两点在直线的异侧,点A到的距离AC=4,点B到的距离BD=2,CD=6.若点P在直线上运动,则的最大值为()A.B.C.6D.第5页共10页答案:B解题思路:试题难度:三颗星知识点:轴对称—线段之差(绝对值)最大4.如图,在菱形ABCD中,AB=4,∠ABC=60°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()第6页共10页A.2B.C.4D.答案:D解题思路:试题难度:三颗星知识点:轴对称—最短路线问题5.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A,B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E,F为边OA上的两个动点,且EF=2,则当四边形CDEF的周长最小时,点F的坐标为()第7页共10页A.B.C.D.答案:B解题思路:第8页共10页试题难度:三颗星知识点:轴对称—线段之和最小6.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.若Q为OA上一点,R为OB上一点,则△PQR周长的最小值为()A.10B.15C.20D.30答案:A解题思路:第9页共10页试题难度:三颗星知识点:轴对称—线段之和最小7.如图,已知∠MON=20°,A为OM上一点,,D为ON上一点,.若C为AM上任意一点,B为OD上任意一点,则AB+BC+CD的最小值是()A.10B.11C.12D.13答案:C解题思路:第10页共10页试题难度:三颗星知识点:轴对称——最值问题
本文标题:几何最值—轴对称求最值(含答案)
链接地址:https://www.777doc.com/doc-6832812 .html