您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 近年中考数学压轴题100题精选
12010年中考数学压轴题100题精选答案 【001】如图,已知抛物线2(1)33yax=−+(a≠0)经过点(2)A−,0,抛物线的顶点为D,过O作射线OMAD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()ts.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OCOB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB‐BC‐CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接..写出t的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。 xyM C D P Q OAB AC B P QE D图16 2 【004】如图,已知直线128:33lyx=+与直线2:216lyx=−+相交于点Cll12,、分别交x轴于AB、两点.矩形DEFG的顶点DE、分别在直线12ll、上,顶点FG、都在x轴上,且点G与点B重合. (1)求ABC△的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原点出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)tt≤≤秒,矩形DEFG与ABC△重叠部分的面积为S,求S关t的函数关系式,并写出相应的t的取值范围. 【005】如图1,在等腰梯形ABCD中,ADBC∥,E是AB的中点,过点E作EFBC∥交CD于点F.46ABBC==,,60B=°∠. (1)求点E到BC的距离; (2)点P为线段EF上的一个动点,过P作PMEF⊥交BC于点M,过M作MNAB∥交折线ADC于点N,连结PN,设EPx=. ①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由. ADBE O C F xy1ly2l (G) (第26题) A D E B F C 图4(备用)ADEBFC图5(备用)A D E B F C 图1 图2A DE B FCP NM 图3AD EBF C PN M(第25题) 3【006】如图13,二次函数)0(2++=pqpxxy的图象与x轴交于A、B两点,与y轴交于点C(0,‐1),ΔABC的面积为45。 (1)求该二次函数的关系式; (2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围; (3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。 【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值. 4 【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。 (1)求证:BE=AD; (2)求证:AC是线段ED的垂直平分线; (3)△DBC是等腰三角形吗?并说明理由。 【009】一次函数yaxb=+的图象分别与x轴、y轴交于点,MN,与反比例函数kyx=的图象相交于点,AB.过点A分别作ACx⊥轴,AEy⊥轴,垂足分别为,CE;过点B分别作BFx⊥轴,BDy⊥轴,垂足分别为FD,,AC与BD交于点K,连接CD. (1)若点AB,在反比例函数kyx=的图象的同一分支上,如图1,试证明: ①AEDKCFBKSS=四边形四边形; ②ANBM=. (2)若点AB,分别在反比例函数kyx=的图象的不同分支上,如图2,则AN与BM还相等吗?试证明你的结论. 【010】如图,抛物线23yaxbx=+−与x轴交于AB,两点,与y轴交于C点,且经过点(23)a−,,对称轴是直线1x=,顶点是M. (1)求抛物线对应的函数表达式; (2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点PACN,,,为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由; (3)设直线3yx=−+与y轴的交点是D,在线段BD上任取一点E(不与BD,重合),经过ABE,,三点的圆交直线BC于点F,试判断AEF△的形状,并说明理由; (4)当E是直线3yx=−+上任意一点时,(3)中的结论是否成立?(请直接写出结论). 5 【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明) 【012】如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于ABCD、、、四点.抛物线2yaxbxc=++与y轴交于点D,与直线yx=交于点MN、,且MANC、分别与圆O相切于点A和点C. (1)求抛物线的解析式; (2)抛物线的对称轴交x轴于点E,连结DE,并延长DE交圆O于F,求EF的长. (3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由. O Bxy A M C 1 3− (第26题图)F B A D C E G 第24题图① D F B A D C E G 第24题图② F B A C E 第24题图③ O xy N C D E F B MA 6【013】如图,抛物线经过(40)(10)(02)ABC−,,,,,三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PMx⊥轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得DCA△的面积最大,求出点D的坐标. 【014】在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线yx=上时停止旋转,旋转过程中,AB边交直线yx=于点M,BC边交x轴于点N(如图). (1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBNΔ的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【015】如图,二次函数的图象经过点D(0,397),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 7【016】如图9,已知正比例函数和反比例函数的图象都经过点(33)A,. (1)求正比例函数和反比例函数的解析式; (2)把直线OA向下平移后与反比例函数的图象交于点(6)Bm,,求m的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积1S与四边形OABD的面积S满足:123SS=?若存在,求点E的坐标; 若不存在,请说明理由. 【017】如图,已知抛物线2yxbxc=++经过(10)A,,(02)B,两点,顶点为D. (1)求抛物线的解析式; (2)将OAB△绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式; (3)设(2)中平移后,所得抛物线与y轴的交点为1B,顶点为1D,若点N在平移后的抛物线上,且满足1NBB△的面积是1NDD△面积的2倍,求点N的坐标. yx OC DB A 33 6 8【018】如图,抛物线24yaxbxa=+−经过(10)A−,、(04)C,两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点(1)Dmm+,在第一象限的抛物线上,求点D关于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点,且45DBP∠=°,求点P的坐标. 【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO (1)试比较EO、EC的大小,并说明理由 (2)令;四边形四边形CNMNCFGHSSm=,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 (3)在(2)的条件下,若CO=1,CE=31,Q为AE上一点且QF=32,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。 9【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在A
本文标题:近年中考数学压轴题100题精选
链接地址:https://www.777doc.com/doc-6833352 .html