您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 第3章-人工神经元网络控制论-控制基础
第3章人工神经元网络控制论-控制基础智能控制基础引言3.2前向神经网络模型3.6神经网络控制基础3.7非线性动态系统的神经网络辨识3.8神经网络控制的学习机制3.9神经网络控制器的设计3.3动态神经网络模型3.10单一神经元控制法目录引言神经网络控制的优越性神经网络控制器的分类神经网络的逼近能力神经网络控制的优越性1神经网络可以处理那些难以用模型或规则描述的过程或系统2神经网络采用并行分布式信息处理,具有很强的容错性。3神经网络神经网络具有是本质的非线性系统4很强的信息综合能力5神经网络的硬件实现愈趋方便神经网络控制器的分类逆控制器自适应网络控制器前馈控制结构自适应评价网络混合控制系统神经网络控制器(1)导师指导下的控制器XUY专家经验控制器动力学系统动力学系统神经网络UYX利用专家经验图3-2-1导师指导下的神经控制结构图动力学系统神经网络YYUd动力学系统UYYdF-1Y=FU图3-2-2逆控制器的结构图网络控制器N神经网络N参考模型非线性系统ryecipmceecpyyiu++--图3-2-3自适应网络控制结构图(2)逆控制器XUY专家经验控制器动力学系统动力学系统神经网络UYX利用专家经验图3-2-1导师指导下的神经控制结构图动力学系统神经网络YYUd动力学系统UYYdF-1Y=FU图3-2-2逆控制器的结构图网络控制器N神经网络N参考模型非线性系统ryecipmceecpyyiu++--图3-2-3自适应网络控制结构图(3)自适应网络控制器模型参考自适应网络控制器XUY专家经验控制器动力学系统动力学系统神经网络UYX利用专家经验图3-2-1导师指导下的神经控制结构图动力学系统神经网络YYUd动力学系统UYYdF-1Y=FU图3-2-2逆控制器的结构图网络控制器N神经网络N参考模型非线性系统ryecipmceecpyyiu++--图3-2-3自适应网络控制结构图(4)前馈控制结构神经网络的逼近能力相关结论:含一个隐层以上的多层前向传播神经网络不仅可以以任意精度逼近连续函数本身,还可以逼近函数的导数项。引言3.2前向神经网络模型3.6神经网络控制基础3.7非线性动态系统的神经网络辨识3.8神经网络控制的学习机制3.9神经网络控制器的设计3.3动态神经网络模型3.10单一神经元控制法目录辨识基础3.7.2神经网络辨识模型的结构3.7.3非线性动态系统的神经网络辨识3.7非线性动态系统的神经网络辨识L.A.Zadeh曾经下过这样的定义:“辨识是在输入和输出数据的基础上,从一组给定的模型中,确定一个与所测系统等价的模型”。使用非线性系统的输入输出数据来训练神经网络可认为是非线性函数的逼近问题。多层前向传播网络能够逼近任意L2非线性函数。3.7.1辨识基础模型的选择输入信号的选择误差准则的选择k))k(e(f)W(E)k(e)]k(e[f2辨识基础3.7.2神经网络辨识模型的结构3.7.3非线性动态系统的神经网络辨识3.7非线性动态系统的神经网络辨识神经网络辨识模型的结构逆模型法前向建模法前向建模法所谓前向建模法是利用神经网络来逼近非线性系统的前向动力学模型。1))m-u(ku(k),...,1),n-y(k(y(k),...,f1)(ky~N非线性系统TDITDI神经网络学习规则TDIydyNu+-逆模型法直接法:TDI神经网络学习规则yyNu+-非线性系统TDI存在的问题存在的问题学习过程不一定是目标最优的。一旦非线性系统对应关系不是一对一的,那么不准确的逆模型可能会被建立。克服方法TDI逆模型网络N学习规则yyNu+-非线性系统TDI逆模型网络N学习规则yu-+非线性系统前向神经网络辨识基础3.7.2神经网络辨识模型的结构3.7.3非线性动态系统的神经网络辨识3.7非线性动态系统的神经网络辨识并行结构)]1(),...,1(),(),1(ˆ),...,1(ˆ),(ˆ[)1(ˆmkukukunkykykyNky串行结构)]1(),...,1(),(),1(),...,1(),([)1(ˆmkukukunkykykyNky根据可分离性和线性性,有4种结构。辨识的两种结构含线性部分的辨识问题(模型1、2)模型1)]1mk(u),...,1k(u),k(u[g)ik(y)1k(y1n0ii模型2)ik(u)]1nk(y),...,1k(y),k(y[f)1k(y1m0ii线性部分的参数已知TDI逆模型网络N学习规则yyNu+-非线性系统TDI神经网络101niiz模型①TDI-+y(k+1)y(k+1)uTDI逆模型网络N学习规则yyNu+-非线性系统TDI神经网络模型②TDI-+y(k+1)u101miiz++线性部分的参数未知神经网络模型②TDI-+y(k+1)u101miiz++-+模型①y(k+1)u(k)TDI神经网络W线性部分TDIy(k)y1(k+1)y2(k+1)++c(k+1)线性部分学习方法最小二乘法其中初始条件完全未知时,可取))(ˆ)1()1()(1()(ˆ)1(ˆ2lllylKllT)()]1()1([)1(lPllKIlPT1)]1()()1()1()[1()()1(llPllllPlKTIP)0(;0)0(ˆ)]1(),...,1(),([)1(222nlylylyl非线性部分学习方法BP学习)l(wo)l(w)1l(wjipipjjijiLayerHidden)Net()w(LayerOutput)Net()ot(pjssjpspjpjpjpj例3-8考虑以下模型:y(k+1)=a·y(k)+b·y(k-1)+g(u)其中a=0.3,b=0.6g(u)=u3+0.3u2-0.4u试辨识该系统解线性部分,采用递推最小二乘学习法非线性部分采用前向传播多层神经网络来逼近。选择神经网络结构为))l(ˆ)1l()1l(y)(1l(K)l(ˆ)1l(ˆT21T)]1l()l(P)1l()1l()[1l()l(P)1l(K)l(P)]1l()1l(KI[)1l(PT00ba)0(ˆ100010)0(ρ,1,8,4,10,0.2辨识效果校验输入信号:100...2,1,01002sin)(kkku非线性可分离系统(模型3))]1(),...,1(),([)]1(),...,1(),([)1(mkukukugnkykykyfky学习pjLpjpjLpjLpjLpjLpjpjLpjLpjLtoooNettoofNet112111211()()()()()()()()(())(())()pjLpjpjLpjLpjLtoofNet21222()()()()(())()pjrpjrpkrkkjrfNetw1111111()()()()()pjrpjrpkrkkjrfNetw2222121()()()()()例3-9考虑如下非线性离散系统:求:采用双模型法解决该系统的辨识问题。)()(1)()1(32kukykyky两种方法的学习曲线单一模型网络:两模型网络:2,20,10,12,2,6,1两模型法的辨识效果引言3.2前向神经网络模型3.6神经网络控制基础3.7非线性动态系统的神经网络辨识3.8神经网络控制的学习机制3.9神经网络控制器的设计3.3动态神经网络模型3.10单一神经元控制法目录神经网络控制的学习机制神经元控制器的目的在于如何设计一个有效的神经元网络去完成代替传统控制器的作用,使得系统的输出跟随系统的期望输出。为了达到这个目的,神经网络的学习方法就是寻找一种有效的途径进行网络连接权阵或网络结构的修改,从而使得网络控制器输出的控制信号能够保证系统输出跟随系统的期望输出。分类3.8.1监督式学习离线学习法在线学习法反馈误差学习法多网络学习法3.8.2增强式学习离线学习法适合静态环境在线学习法适合模型已知的动态环境学习方法采用最速下降法wkwkEwwkykykykwkwkykykykukukwkjijipjijidjijidji()()()(()())()()()(()())()()()()1假设系统的Jacobian矩阵已知反馈误差学习法适用于非线性系统线性绝对占优条件下的网络学习多神经网络学习法1前向建模多网络控制多神经网络学习法2逆模型建模的多网络控制结构图非线性系统神線网络控制器Nc+-yyu图3-2-23前向建模多网络控制结构图神经网络控制器Nc非线性系统++-yyu图3-2-24逆模型建模的多网络控制结构图神经网络辨识器NiyM神经网络逆模型辨识器Nyu-idddd增强式学习利用当前控制是否成功来决定下一次控制该如何走的学习方式。修正的办法是对某一成功的行为进行鼓励,而对不成功的行为进行惩罚。用神经网络来实现时,则可在权
本文标题:第3章-人工神经元网络控制论-控制基础
链接地址:https://www.777doc.com/doc-6852740 .html