您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 数列中分奇偶项求和问题
1数列中分奇偶数项求和问题数列求和问题中有一类较复杂的求和,要对正整数n进行分奇数和偶数情形的讨论,举例说明如下:一、相邻两项符号相异;例1:求和:n1nSn-3…(-1)(4)nN解:当n为偶数时:S1591342nnnnn当n为奇数时:159134n32nS(4-3)(4-)n-1nnnn二、相邻两项之和为常数;例2:已知数列{an}中a1=2,an+an+1=1,Sn为{an}前n项和,求Sn解:①当n为偶数时:12341nnnSaaaaaa…12341()()()122nnnnaaaaaa…②当n为奇数时:123451()()()nnnSaaaaaaa…13222nn三、相间两项之差为常数;例3:已知数列{an}中a1=1,a2=4,an=an-2+2(n≥3),Sn为{an}前n项和,求Sn解:∵an-an-2=2(n≥3)∴a1,a3,a5,…,a2n-1为等差数列;a2,a4,a6,…,a2n为等差数列当n为奇数时:11(1)22nnan当n为偶数时:4(1)222nnan即n∈N+时,1(1)nnan∴①n为奇数时:1(1)(123)2122nnnnSnn…②n为偶数时:(1)(123)222nnnnSnn…四、相间两项之比为常数;例4:已知an,an+1为方程21()03nnxCx的两根n∈N+,a1=2,Sn=C1+C2+…+Cn,2求an及S2n。解:依题意:11()3nnnaa∴213nnaa其中1212,6aa。∴13521,,,...,naaaa为等比数列;2462,,,...,naaaa为等比数列∴①n为偶数时:11222211111()()()36323nnnnaa②n为奇数时:11122112()2()33nnna则有:12212()21()311()2()23{nnnnkkNankkN而Cn=an+an+1∴①n为奇数时,n+1为偶数:11122211111312()()()32363nnnnnnCaa则:1352113163113nnCCCC(1-)…②n为偶数时,n+1为奇数:222111151()2()()23323nnnnnnCaa则:于是:24625163113nnCCCC(1-)…21234212...11(1)(1)1359133..(1)1166231133nnnnnnScccccc
本文标题:数列中分奇偶项求和问题
链接地址:https://www.777doc.com/doc-6869351 .html