您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 微积分微分方程总结及练习题
1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxxfdyyg)()(形如(1)可分离变量的微分方程解法dxxfdyyg)()(分离变量法2、一阶微分方程的解法)(xyfdxdy形如(2)齐次方程解法xyu作变量代换)(111cybxacbyaxfdxdy形如齐次方程.,01时当cc,令kYyhXx,(其中h和k是待定的常数)否则为非齐次方程.(3)可化为齐次的方程解法化为齐次方程.)()(xQyxPdxdy形如(4)一阶线性微分方程,0)(xQ当上方程称为齐次的.上方程称为非齐次的.,0)(xQ当齐次方程的通解为.)(dxxPCey(使用分离变量法)解法非齐次微分方程的通解为dxxPdxxPeCdxexQy)()(])([(常数变易法)(5)伯努利(Bernoulli)方程nyxQyxPdxdy)()(形如)1,0(n方程为线性微分方程.时,当1,0n方程为非线性微分方程.时,当1,0n解法需经过变量代换化为线性微分方程.,1nyz令.))1)((()()1()()1(1CdxenxQezydxxPndxxPnn利用全微分表达式求解微分方程常见的全微分表达式222yxdydyxdxxydxydxxdy2xydyxydxxdyarctan22xydxyydxxdyln)ln(212222yxdyxydyxdxyxyxdyxydxxdyln21223、可降阶的高阶微分方程的解法解法),(xPy令特点.y不显含未知函数),()2(yxfy型)()1()(xfyn接连积分n次,得通解.型解法代入原方程,得)).(,(xPxfP,Py),(xPy令特点.x不显含自变量),()3(yyfy型解法代入原方程,得).,(PyfdydpP,dydpPy4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(yxQyxPy形如定理1如果函数)(1xy与)(2xy是方程(1)的两个解,那末2211yCyCy也是(1)的解.(21,CC是常数)定理2:如果)(1xy与)(2xy是方程(1)的两个线性无关的特解,那么2211yCyCy就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(xfyxQyxPy形如定理3设*y是)2(的一个特解,Y是与(2)对应的齐次方程(1)的通解,那么*yYy是二阶非齐次线性微分方程(2)的通解.定理4设非齐次方程(2)的右端)(xf是几个函数之和,如)()()()(21xfxfyxQyxPy而*1y与*2y分别是方程,)()()(1xfyxQyxPy)()()(2xfyxQyxPy的特解,那么*2*1yy就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(xfyPyPyPynnnn形如n阶常系数线性微分方程0qyypy二阶常系数齐次线性方程)(xfqyypy二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.02qprr0qyypy特征根的情况通解的表达式实根21rr实根21rr复根ir2,1xrxreCeCy2121xrexCCy2)(21)sincos(21xCxCeyx特征方程为01)1(1)(yPyPyPynnnn特征方程为0111nnnnPrPrPr特征方程的根通解中的对应项rk重根若是rxkkexCxCC)(1110ik复根重共轭若是xkkkkexxDxDDxxCxCC]sin)(cos)[(11101110推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(xfqyypy二阶常系数非齐次线性方程型)()()1(xPexfmx解法待定系数法.,)(xQexymxk设是重根是单根不是根2,10k型]sin)(cos)([)()2(xxPxxPexfnlx],sin)(cos)([)2()1(xxRxxRexymmxk设次多项式,是其中mxRxRmm)(),()2()1(nlm,max.1;0是特征方程的单根时不是特征方程的根时iik7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.xtextln或)(1)1(11)(xfypyxpyxpyxnnnnnn的方程(其中nppp21,形如叫欧拉方程.为常数),二、典型例题.)cossin()sincos(dyxyxxyyxdxxyyxyxy求通解例1解原方程可化为),cossinsincos(xyxyxyxyxyxyxydxdy,xyu令.,uxuyuxy代入原方程得),cossinsincos(uuuuuuuuxu,cos2cossinxdxduuuuuu分离变量两边积分,lnln)cosln(2Cxuu,cos2xCuu,cos2xCxyxy所求通解为.cosCxyxy.32343yxyyx求通解例2解原式可化为,32342yxyxy,3223134xyxyy即,31yz令原式变为,3232xzxz,322xzxz即对应齐方通解为,32Cxz一阶线性非齐方程伯努利方程,)(32xxCz设代入非齐方程得,)(232xxxC,73)(37CxxC原方程的通解为.73323731xCxy利用常数变易法.212yyy求通解例3解.x方程不显含,,dydPPyPy令代入方程,得,212yPdydPP,112yCP解得,,11yCP,11yCdxdy即故方程的通解为.12211CxyCC.1)1()1(,2yyexeyyyxx求特解例4解特征方程,0122rr特征根,121rr对应的齐次方程的通解为.)(21xexCCY设原方程的特解为,)(2*xebaxxy,]2)3([)(23*xebxxbaaxy则,]2)46()6([)(23*xebxbaxbaaxy代入原方程比较系数得将)(,)(,***yyy,21,61ba原方程的一个特解为,2623*xxexexy故原方程的通解为.26)(2321xxxexexexCCy,1)1(y,1)31(21eCC,]6)1()([3221xexxCCCy,1)1(y,1)652(21eCC,31121eCC,651221eCC由解得,121,61221eCeC所以原方程满足初始条件的特解为.26])121(612[23xxxexexexeey).2cos(214xxyy求解方程例5解特征方程,042r特征根,22,1ir对应的齐方的通解为.2sin2cos21xCxCY设原方程的特解为.*2*1*yyy,)1(*1baxy设,)(*1ay则,0)(*1y,得代入xyy214,xbax2144由,04b,214a解得,0b,81a;81*1xy),2sin2cos()2(*2xdxcxy设,2sin)2(2cos)2()(*2xcxdxdxcy则,2sin)44(2cos)44()(*2xdxcxcxdy,得代入xyy2cos214故原方程的通解为.2sin81812sin2cos21xxxxCxCy,2cos212sin42cos4xxcxd由,04c,214d即,81d,0c;2sin81*2xxy.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设xfxpxxxfyxpy例6解(1)由题设可得:),()1)((2,02)(223xfxxpxxxp解此方程组,得.3)(,1)(3xxfxxp(2)原方程为.313xyxy,的两个线性无关的特解程是原方程对应的齐次方显见221,1xyy是原方程的一个特解,又xy1*由解的结构定理得方程的通解为.1221xxCCy.ln5322xxyyxyx求解方程解例7这是一个欧拉方程.,lnxt令dxdtdtdyy则,1tyxdxdtyxyxytt112),(12ttyyx代入原方程得,542tttteyyy(1),tex和(1)对应的齐次方程为,054yyytt(2)(2)的特征方程为,0542rr特征根为,1,521rr(2)的通解为.251tteCeCY设(1)的特解为,)(2*tebaty),22()(2*1baateyt则),444()(2*baateyt代入原方程比较系数得将)(,)(,***yyy,99tbat,0,91ba,912*ttey得(1)的通解为.912251tttteeCeCy故原方程的通解为.ln912251xxxCxCy
本文标题:微积分微分方程总结及练习题
链接地址:https://www.777doc.com/doc-6874731 .html