您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2.1.2《椭圆的简单几何性质》教学设计
2.1.2《椭圆的简单几何性质》第一课时科目:高二数学授课教师:张晶晶指导教师:韩学奎完成时间:2020年9月3日教材分析圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。本节是《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。它是本章也是整个解析几何部分的重要基础知识,原因如下:第一,在教材结构上,本节内容起到一个承上启下的重要作用。前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的一种有效方法。第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。而这种思想,将贯穿于整个高中阶段的数学学习。第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。学情分析1.在学习本节内容以前,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠定了基础.2.经过两年的高中学习,学生的计算能力、分析解决问题的能力、归纳概括能力、建模能力都有了明显提高,使得进一步探究学习本节内容成为可能。但是,在本节课的学习过程中,学生对椭圆的离心率的理解是一个考验,可能会有一部分学生探究学习受阻,教师要适时加以点拨指导.3.学生对于椭圆及其标准方程都有了一定的认识,本节课通过学生对椭圆图形的直观观察,探索发现应该关注椭圆的哪些性质,以及其性质在代数方面上的反映.教学重、难点教学重点:椭圆的几何性质.通过几何性质求椭圆方程并画图教学难点:椭圆离心率的概念的理解.教学方法教学方法:讲授法、探究法教学课型、工具课型:新授课教学工具:多媒体设备教学目标◆知识与技能目标通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质,用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念.◆过程与方法目标能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图.引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中要通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过39P的思考问题,探究椭圆的扁平程度量椭圆的离心率.◆情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.◆能力目标(1)分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.教学过程设计教学步骤教师活动学生活动设计意图(一)导入一、情景导入:1.国家大剧院的半椭圆正视图;1.2.椭圆的标准方程.在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.(二)椭圆的大小思考1:如何将一个长、宽分别为10cm,8cm的矩形纸板制作成一个最大的椭圆呢?1.范围由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22ax≤1,22by≤1即x2≤a2,y2≤b2所以|x|≤a,|y|≤b即-a≤x≤a,-b≤y≤b这说明椭圆位于直线x=±a,y=±b所围成的矩形里。2.对称性点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y);(1)在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。(2)如果以-x代x方程方程不变,通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.复习关于x轴,y轴,原点对称的点的坐标之间的关系研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x,y的范围就知道了.归纳提问:从上面三种情况看出,椭圆具有怎样的对称性.那么说明曲线的对称性怎样呢?[曲线关于y轴对称。](3)如果同时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称呢?[曲线关于原点对称。]椭圆关于x轴,y轴和原点都是对称的。这时,椭圆的对称轴是什么?[坐标轴]椭圆的对称中心是什么?[原点]椭圆的对称中心叫做椭圆的中心。3.顶点在椭圆的标准方程里,令x=0,得y=±b。这说明了B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。令y=0,得x=±a。这说明了A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。因为x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。线段A1A2,B1B2分别叫做椭圆的长轴和短轴。它们的长|A1A2|=2a,|B1B2|=2b(a和b分别叫做椭圆的长半轴长和短半轴长)在Rt△OB2F2中,由勾股定理有[来源:Zxxk.Com]|OF2|2=|B2F2|2-|OB2|2,即c2=a2-b2这就是在前面一节里,我们令a2-c2=b2的几何意义。发现在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y.求曲线与x轴、y轴的交点.观察图形,由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长.归纳出:从上面三种情况看出,椭圆具有怎样的对称性.研究曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,常常需要求出曲线与x轴,y轴的交点坐标.(三)椭圆的形状思考2:对于椭圆369:221yxC与椭圆11216:222yxC更接近圆的是?4.离心率定义:椭圆的焦距与长轴长的比e=ac,叫做椭圆的离心率。因为ac0,所以0e1.[来源:Zxxk.Com]得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁;(2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。当e=1时,图形变成了一条线段。观察图形,说明当离心率e变化时,椭圆形状是怎样随之变化的.为什么?留给学生课后思考.调用几何画板,演示离心率变化(分越接近1和越接近0两种情况讨论)对椭圆形状的影响]三、例题例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.[根据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?因为题目给出的椭圆方程不是标准方程,所以必须先把它转化为标准方程,再讨论它的几何性质]解:把已知方程化为标准方程1452222yx,这里a=5,b=4,所以c=1625=3因此,椭圆的长轴和短轴长分别是2a=10,2b=8离心率e=ac=53两个焦点分别是F1(-3,0),F2(3,0),四个顶点分别是A1(-5,0)A1(5,0)A1(0,-4)F1(0,4).根据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本形状和大小的草图:(1)以椭圆的长轴、短轴为邻边画矩形;(2)由矩形四边的中点确定椭圆的四个顶点;(3)用平滑的曲线将四个顶点连成一个椭圆。例2、求符合下列条件的椭圆的标准方程:(1)经过点(-3,0)、(0,-2);(2)长轴的长等于20,离心率等于0.6例3:椭圆的一个顶点为A(2.0),其长轴长是短轴长的2倍,求椭圆的标准方程.焦点在x轴、y轴上的椭圆的几何性质对比.学生演板,教师点评.画图时要注意它们的对称性及顶点附近的平滑性.四、小结(1)理解椭圆的简单几何性质,给出方程会求椭圆的焦点、顶点和离心率;(2)了解离心率变化对椭圆形状的影响;(3)通过曲线的方程研究曲线的几何性质并画图是解析几何的基本方法.学生思考并总结.培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.五、布置作业课本习题2.1(A)组第4、5题
本文标题:2.1.2《椭圆的简单几何性质》教学设计
链接地址:https://www.777doc.com/doc-6876725 .html