您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 24.4.1解直角三角形
课题24.4.1解直角三角形授课时间授课班级教学目标知识与技能:1.使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.过程与方法:让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.重点难点重点:用直角三角形的三个关系式解直角三角形.难点:用直角三角形的有关知识去解决简单的实际问题.自主学习内容预习教材111——113页,找出疑问的地方.教学步骤教学内容教法学法二次备课创设情境导入新课复习:在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值.例1如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?“解直角三角形”的含义:在直角三角形中,由已知元素求出未复习形式导入学生结合引例讨论师生合作探究新知知识运用知元素的过程,叫做解直角三角形.问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?例2如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,在炮台A处测得敌舰C在它的南偏东40°的方向,在炮台B处测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到1米).问:AC还可以用哪种方法求?问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角.1.海船以32.6海里/时的速度向正北方向航行,在A处看灯塔Q在海船的北偏东30°处,半小时后航学生讨论过程中需使其理解三角形中“元素”的内涵,至于“元素”的定义不作深究.学生讨论得出各种解法,分析比较,得出:使用题目中原有的条件,可使结果更精确几个学生展示学生交流讨论归纳小结作业行到B处,发现此时灯塔Q与海船的距离最短,求灯塔Q到B处的距离.(画出图形后计算,精确到0.1海里)通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.分层作业:A层:P113,1B、C层:练习册教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.教学反思
本文标题:24.4.1解直角三角形
链接地址:https://www.777doc.com/doc-6883491 .html