您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 上海市2019届初三数学一模提升题汇编第24题(二次函数综合)(含2019上海中考试题答案)
1上海市2019届一模提升题汇编第24题(二次函数综合)含2019上海中考试题中考【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy中,顶点为M的抛物线C1:2(0)yaxbxa经过点A和x轴上的点B,AO=OB=2,120AOBo.(1)求该抛物线的表达式;(2)联结AM,求AOMSV;(3)将抛物线C1向上平移得到抛物线C2,抛物线C2与x轴分别交于点E、F(点E在点F的左侧),如果△MBF与△AOM相似,求所有符合条件的抛物线C2的表达式.【24.解:(1)过A作AH⊥x轴,垂足为H,∵OB=2,∴B(2,0)………………………………(1分)∵120AOB∴60,30AOHHAO.∵OA=2,∴112OHOA.∵222RtAHOOHAHOAV在中,,∴22213AH.∴(1,3)A……………………………………(1分)(第24题图)2∵抛物线21:CyaxbxAB经过点、,∴可得:342033233aababb解得:………………………………………………(1分)∴这条抛物线的表达式为232333yxx…………………………………………(1分)(2)过M作MG⊥x轴,垂足为G,∵232333yxx∴顶点M是31,3,得33MG……………………………………………………(1分)∵(1,3)A,M31,3.∴得:直线AM为23333yx…………………………………………………(1分)∴直线AM与x轴的交点N为1,02……………………………………………………(1分)∴1122AOMSONMGONAH1131132232233…………………………………………………………………………(1分)(3)∵)33,1(M、)0,2(B,∴33MGRtBGMMBGBG在中,tan=,∴MBG=30.∴MBF150.由抛物线的轴对称性得:MO=MB,3∴MBOMOB=150.∵OB=120A,∴OM=150A∴OM=MBFA.∴BMBFOAOM或BFBMOAOM相似时,有:AOM与MBF当即332BF2332或BF3322332,∴32BF或2BF.∴)0,38)或(0,4(F………………………………………………(2分)设向上平移后的抛物线kxxy33233:为C22,当)0,4(F时,338k,∴抛物线33833233:为C22xxy…(1分)当)0,38(F时,27316k,抛物线22323163:3327Cyxx…….(1分)】【2019届一模浦东】24.(本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy中,直线12yxb与x轴相交于点A,与y轴相交于点B.抛物线244yaxax经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)求证:△BOD∽△AOB;(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.(图9)xBOAy4【24、(1)211482yxx;(2)证明略;(3)1612,55】【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy中,抛物线2(0)yaxbxca=++?与y轴交于点C(0,2),它的顶点为D(1,m),且1tan3COD?.(1)求m的值及抛物线的表达式;(2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°.求P点的坐标.Oxy123412345-1-2-3-1-2-3(第24题图)5【24.解:(1)作DH⊥y轴,垂足为H,∵D(1,m)(0m),∴DH=m,HO=1.∵1tan3COD?,∴13OHDH=,∴m=3.·····················································(1分)∴抛物线2yaxbxc=++的顶点为D(1,3).又∵抛物线2yaxbxc=++与y轴交于点C(0,2),∴3,1,22.abcbacì++=ïïïïï-=íïïïï=ïî(2分)∴1,2,2.abcì=-ïïïï=íïï=ïïî∴抛物线的表达式为222yxx=-++.······(1分)(2)∵将此抛物线向上平移,∴设平移后的抛物线表达式为222(0)yxxkk=-+++,.····························(1分)则它与y轴交点B(0,2+k).∵平移后的抛物线与x轴正半轴交于点A,且OA=OB,∴A点的坐标为(2+k,0)..(1分)∴20(2)2(2)2kkk=-+++++.∴122,1kk=-=.∵0k,∴1k=.∴A(3,0),抛物线222yxx=-++向上平移了1个单位..······························(1分)∵点A由点E向上平移了1个单位所得,∴E(3,-1)..···································(1分)(3)由(2)得A(3,0),B(0,3),∴32AB=.∵点P是抛物线对称轴上的一点(位于x轴上方),且∠APB=45°,原顶点D(1,3),∴设P(1,y),设对称轴与AB的交点为M,与x轴的交点为H,则H(1,0).∵A(3,0),B(0,3),∴∠OAB=45°,∴∠AMH=45°.∴M(1,2).∴2BM=.∵∠BMP=∠AMH,∴∠BMP=45°.∵∠APB=45°,∴∠BMP=∠APB.∵∠B=∠B,∴△BMP∽△BPA.··································································(2分)BAPxyOMH6∴BPBABMBP=.∴23226BPBABM=??∴221(3)6BPy=+-=.∴123535yy,=+=-(舍)..····························(1分)∴(1,35)P+..·····················································································(1分)】【2019届一模普陀】24.(本题满分12分)如图10,在平面直角坐标系中,抛物线23yaxbx(0)a与x轴交于点A1,0和点B,且3OBOA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BEDE时,求点E的坐标;(3)如果点F是抛物线上的一点,且,求点F的坐标.135FBDxOy图10CBAOyx7【24.解:(1)∵抛物线与x轴交于点A1,0和点,且3OBOA,∴点的坐标是3,0.···········································································(1分)解法一:由抛物线23yaxbx经过点1,0和3,0.得03,0933.abab解得1,2.ab······························································(1分)∴抛物线的表达式是223yxx.······················································(1分)点D的坐标是1,4.·············································································(1分)解法二:由抛物线23yaxbx经过点1,0和3,0.可设抛物线的表达式为(1)(3)yaxx,由抛物线与y轴的交点C的坐标是0,3,得3(01)(03)a,解得1a.······························································(1分)∴抛物线的表达式是223yxx.························································(1分)点D的坐标是1,4.·············································································(1分)(2)过点D作DHOC,H为垂足.∴90DHO.∴90DEHEDH.∵BEDE,∴90DEHBEO.∴BEOEDH.又∵BOEEHD,∴△BOE∽△EHD.·········································(1分)∴BOOEEHHD.∵点D的坐标是1,4,∴1DH,4OH.BB8∵点的坐标是3,0,∴3OB.∴341OEOE.··············································································(1分)∴1OE或3OE.················································································(1分)∵点E与点C不重合,∴1OE.∴点E的坐标是0,1.···········································································(1分)(3)过点F作FGx轴,G为垂足.作45DBM,由第(2)题可得,点M与点E重合.∵1OE,1DH,∴OEDH.可得△BOE≌△EHD.∴BEED.∵90BED,∴45DBE.∵135FBD,∴90FBE.················································································(1分)∴OBEGFB.∴在Rt△BOE中,90BOE,∴cot3OBE∴cot3GFB.··········(1分)∴3FGBG.设点F点的坐标为2,23mmm.∴223FGmm,3BGm.∴2233(3)mmm.···································································(1分)解得3m,4m.∵3m不合题意舍去,∴4m.点F的坐标是4,21.··········································································(1分)】【2019届一模奉贤】24.(本题满分12分,每小题满分6分)B9如图10,在平面直角坐标系中,直线AB与抛物线2yaxbx=+交于点A(6,0)和点B(1,-5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是32,求点C的坐标.【24.解:(1)由题意得,抛物线2yaxbx=+经过点A(6,0)和点B(1,-5),代入得3660,5.ababì+=ïïíï+=-ïî解得1,6.abì=ïïíï=-ïî∴抛物线
本文标题:上海市2019届初三数学一模提升题汇编第24题(二次函数综合)(含2019上海中考试题答案)
链接地址:https://www.777doc.com/doc-6913701 .html