您好,欢迎访问三七文档
磁场的基本知识一、磁体与磁感线某些物体具有吸引铁、镍、钴等物质的性质叫做磁性。具有磁性的物体叫做磁体。(天然、人造)常见的人造磁体形式有•磁场是存在于磁体及运动电荷周围的一种特殊物质.它的基本特点是对放入其中的磁极及运动电荷有力的作用.永磁体的磁感线注意:内部也有磁感线,内部和外部的磁感线形成闭合曲线。磁感应线的特性1.磁场的强弱可用磁感应线的疏密表示,磁感应线密的地方磁场强;疏的地方磁场弱。2.在磁铁外部,磁感应线从N极到S极;在磁铁内部,磁感应线从S极到N极。磁感应线是闭合曲线。3.磁感应线不相交。二、电流的磁效应奥斯特:通电导体的周围存在磁场,这种现象叫电流的磁效应。磁场方向决定于电流方向,可以用右手螺旋定则来判断。1、通电直导体的磁场图3通电长直导线的磁场方向方法是:用右手握住载流直导体,拇指伸直并指向电流方向,则弯曲的四指的指向伸直的拇指所指的方向就是磁感应线方向。通电直导线2环形电流的磁场通电螺线管磁场的基本物理量1、磁感应强度在磁场中垂直于此磁场方向的通电导线,所受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,用B表示。ILFB磁感应强度是矢量:B的方向与磁场方向相同,即与小磁针N极受力方向相同。单位:特斯拉(T)均与磁场中各点的磁感应强度大小和方向均相同。2、磁通在磁感应强度为B的均与磁场中取一个与磁场方向垂直,面积为S的平面,则B与S的乘积,叫做穿过这个平面的磁通量,简称磁通。即SB即磁感应强度B可看作是通过单位面积的磁通,因此磁感应强度B也常叫做磁通密度,并用Wb/m2作单位。磁通的国际单位是韦伯(Wb)。由磁通的定义式,可得=BS(1)磁场和面垂直:Φ=BS(2)磁场和面平行:Φ=0(3)磁场和面成任意角度:Φ=BSn3.磁场强度磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值,用字母H表示。BH磁场强度H也是矢量,其方向与磁感应强度B同向,国际单位是:安培/米(A/m)。必须注意:磁场中各点的磁场强度H的大小只与产生磁场的电流I的大小和导体的形状有关,与磁介质的性质无关。一、磁路磁通所经过的路径叫做磁路。为了使磁通集中在一定的路径上来获得较强的磁场,常常把铁磁材料制成一定形状的铁心,构成各种电气设备所需的磁路。与电路类似,磁路分为无分支磁路和有分支磁路。利用铁磁材料可以尽可能地将磁通集中在磁路中,与电路相比,漏磁现象比漏电现象严重的多。全部在磁路内部闭合的磁通叫做主磁通。部分经过磁路,部分经过磁路周围物质的闭合磁通叫做漏磁通。为了计算简便,在漏磁不严重的情况下可将其忽略,只计算主磁通即可。磁路与电路的比较电路磁路电流I磁通电阻磁阻电阻率磁导率电动势E磁动势Em=IN电路欧姆定律I=E/R磁路欧姆定律=Em/RmSLRSLRm实验步骤:1、导线AB在磁场中做切割磁感线的运动。2、导线AB沿着平行磁感线的方向运动。一、电磁感应现象在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地。电磁感应实验像这样利用磁场产生电流的现象叫做电磁感应现象,用电磁感应的方法产生的电流,叫感应电流,产生的电动势叫感应电动势。实验现象:1、电流计指针发生偏转,表明闭合回路中有电流通过。2、电流计的指针不动,表明回路中没有电流。结论-产生感应电流的条件闭合回路中的一部分导体在磁场中作切割磁感线运动时,回路中有感应电流。二、右手定则当闭合回路中的导线作切割磁感线运动时,所产生的感应电流方向可用右手定则来判断。伸开右手,使拇指与四指垂直,并都跟手掌在一个平面内,让磁感线穿入手心,拇指指向导体运动方向,四指所指的即为感应电流的方向。楞次定律用右手定则判定导体与磁场发生相对运动时产生的感应电流方向较为方便。如何来判定闭合电路的磁通量发生变化时,产生的感应电流方向呢?三、楞次定律楞次定律指出:感应电流的方向,总是使感应电流的磁场阻碍引起感应电流的磁通量的变化,它是判断感应电流方向的普遍规律。1.应用楞次定律判断步骤感应电流方向右手螺旋定则)(1增加或减少原磁通变化方向原磁场B)(12相同或相反与方向感应电流磁场BB愣次定律三、右手定则与楞次定律的一致性右手定则和楞次定律都可用来判断感应电流的方向,两种方法本质是相同的,所得的结果也是一致的。右手定则适用于判断导体切割磁感应线的情况,而楞次定律是判断感应电流方向的普遍规律。一、感应电动势注意:对电源来说,电流流出的一端为电源的正极。在电源内部,电流从电源负极流向正极,电动势的方向也是由负极指向正极,因此感应电动势的方向与感应电流的方向一致,仍可用右手定则和楞次定律来判断。1.感应电动势电磁感应现象中,闭合回路中产生了感应电流,说明回路中有电动势存在。在电磁感应现象中产生的电动势叫感应电动势。产生感应电动势的那部分导体,就相当于电源,如在磁场中切割磁感线的导体和磁通发生变化的线圈等。2.感应电动势的方向注意感应电动势是电源本身的特性,即只要穿过电路的磁通发生变化,电路中就有感应电动势产生,与电路是否闭合无关。若电路是闭合的,则电路中有感应电流,若外电路是断开的,则电路中就没有感应电流,只有感应电动势。感应电动势与电路是否闭合无关二、电磁感应定律法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。te对于N匝线圈,有ttNe大量的实验表明:单匝线圈中产生的感应电动势的大小,与穿过线圈的磁通变化率/t成正比,即式中负号反映楞次定律的内容,即感应电流的磁通总是阻碍产生感应电流的磁通的变化,它并不表示算出的感应电动势得值一定小于零。一、自感现象与自感电动势当导体中的电流发生变化时,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来电流的变化。这种由于导体本身的电流发生变化而产生的电磁感应现象叫做自感现象。1.自感现象自感现象中产生的感应电动势,叫做自感电动势。2.自感电动势一、自感现象与自感电动势自感现象中产生的感应电动势,叫做自感电动势。2.自感电动势计算:在自感电动势的参考方向和电感、元件电流为关联参考方向下,自感电动势公式可由法拉第电磁感应定律推导而得tiLeL注意:公式中的符号表明自感电动势总是企图阻止电流的变化。3.自感现象的意义1、自感现象广泛存在:凡是有导线、线圈的设备中,只要有电流变化都有自感现象存在,因此要充分考虑自感和利用自感。2、自感现象广泛应用与各种电器、电子技术中。实例讲解:日光灯。日光灯电路中利用镇流器的自感现象,获得点燃灯管所需要的高压,并且使日光灯正常工作。3、自感现象在某些情况下是非常有害的。在具有很大自感线圈而电流又很强的电路中,当电路断开的瞬间,由于电路中的电流变化很快,在电路中会产生很大的自感电动势,可能击毁线圈的绝缘保护,或者使开关的闸刀和固定夹片之间的空气电离成导体,产生电弧而烧毁开关,甚至危害工作人员的安全。二、互感现象与互感电动势由于一线圈电流变化引起另一个线圈产生感应电动势的现象,称为互感现象。产生的感应电动势叫互感电动势。1.互感现象演示实验:线圈A和滑键变阻器RP、开关S串联起来以后接到电源E上。线圈B的两端分别和灵敏电流计的两个接线柱连接。观察当开关S闭合或断开的瞬间,电流计的变化情况。现象:当开关S闭合或断开的瞬间,电流计的指针发生偏转,并且指针偏转的方向相反,说明电流方向相反。当开关闭合后,迅速改变变阻器的阻值,电流计的指针也会左右偏转,而且阻值变化越快,电流计指针偏转的角度越大。二、互感现象与互感电动势1.互感现象分析:实验表明线圈A中的电流发生变化时,电流产生的磁场也要发生变化,通过线圈的磁通也要随之变化,其中必然要有一部分磁通通过线圈B,这部分磁通叫做互感磁通。互感磁通同样随着线圈A中电流的变化而变化,因此,线圈B中要产生感应电动势。同样,如果线圈B中的电流发生变化时,也会使线圈A中产生感应电动势。这种现象叫做互感现象,所产生的电动势叫做互感电动势,用来表示。一、互感现象与互感电动势互感现象中产生的感应电动势,叫做互感电动势。2.互感电动势计算:在互感电动势和电流的参考方向一致的情况下,理论和实验证明线圈B互感电动势为tiMeM式中:M——线圈的互感系数,单位是亨[利],符号为H;eM——互感电动势,单位是伏[特],符号为V。注意:互感系数由这两个线圈的几何形状、尺寸、匝数、它们之间的相对位置以及磁介质的磁导率决定,与线圈中的电流大小无关。3.互感现象的意义1、互感现象的应用:应用互感可以很方便的把能量或信号由一个线圈传递到另一个线圈。我们使用的各种各样的变压器,如电力变压器、中周变压器、钳形电流表等都是根据互感原理工作的。2、互感现象在某些情况下是非常有害的。例如:有线电话常常会由于两路电话间的互感而引起串音;无线电设备中,若线圈位置安放不当,线圈间相互干扰,影响设备正常工作。在此类情况下就需要避免互感的干扰。一、互感线圈的同名端§4-8互感线圈的同名端及实验判定1.同名端在电子电路中,对两个或两个以上的有电磁耦合的线圈,常常需要知道互感电动势的极性。如下图所示,图中两个线圈L1、L2绕在同一个圆柱形铁棒上,L1中通有电流I。互感线圈的极性1.同名端(1)当i增大时,它所产生的磁通1增加,L1中产生自感电动势,L2中产生互感电动势,这两个电动势都是由于磁通1的变化引起的。根据楞次定律可知,它们的感应电流都要产生与磁通1相反的磁通,以阻碍原磁通1的增加,由安培定则可确定L1、L2中感应电动势的方向,即电源的正、负极,标注在图上,可知端点1与3、2与4极性相同。(2)当I减小时,L1、L2中的感应电动势方向都反了过来,但端点1与3、2与4极性仍然相同。(3)无论电流从哪端流入线圈,1与3、2与4的极性都保持相同。这种在同一变化磁通的作用下,感应电动势极性相同的端点叫同名端,感应电动势极性相反的端点叫异名端。在电路中,一般用“·”表示同名端,如下图所示。在标出同名端后,每个线圈的具体绕法和它们之间的相对位置就不需要在图上表示出来了。2.同名端的表示二、互感线圈同名端的判定1、应用楞次定律判定若线圈的绕向已知,可应用楞次定律判定互感线圈的同名端。2、应用实验的方法确定若线圈的绕向无法确定式,可应用实验的方法判定互感线圈的同名端。2、应用实验的方法确定若线圈的绕向无法确定式,可应用实验的方法判定互感线圈的同名端。线圈L1与电阻R、开关S串联起来以后,接到直流电源E上。把线圈L2的两端与直流电压表(也可用直流电流表)连接。迅速闭合开关S,电流从线圈L1的A端流入,并且电流随时间的增大而增大,即,如果此时电压表的指针正向偏转,则线圈L1的A端与线圈L2的C端时同名端;反之,则A与C则为异名端。
本文标题:磁场
链接地址:https://www.777doc.com/doc-6914516 .html