您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 常用的基本不等式和重要的不等式
、常用的基本不等式和重要的不等式:(1)0,0,2aaRa当且仅当”取“,0a(2)abbaRba2,,22则(3)Rba,,则abba2(4)222)2(2baba(5)2211222babaabba4、最值定理:设xyyxyx2,0,由(1)如积PyxPxy2(有最小值定值),则积(2)如积22()有最大值(定值),则积SxySyx即:积定和最小,和定积最大新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆运用最值定理求最值的三要素:一正二定三相等5、解不等式关键在于等价转化:(1)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·>与>>或<<同解.(2)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·<与><或<>同解.(3)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0(g(x)0)>与>>或<<同解.≠(4)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0(g(x)0)<与><或<>同解.≠(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)与①f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0);②g(x)<0同解(7)f(x)g(x)f(x)[g(x)]f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.(8)f(x)g(x)f(x)[g(x)]f(x)02<与<≥同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同解.(10)a1logf(x)logg(x)f(x)g(x)f(x)0aa当>时,>与>>同解.当<<时,>与<>>同解.0a1logf(x)logg(x)f(x)g(x)f(x)0g(x)0aa一、例题精讲:
本文标题:常用的基本不等式和重要的不等式
链接地址:https://www.777doc.com/doc-6916092 .html