您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第一章全等三角形复习课课件
全等三角形第一章——复习课全等概念:能够完全重合的两个图形叫做全等形全等三角形概念:能够完全重合的两个三角形叫做全等三角形概念回顾2、一个三角形经过平移、翻折、旋转,前后的图形全等。常见的图形有:AFEDCBABCDEABCD平移旋转翻折3.注意:两个三角形全等在表示时通常把对应顶点的字母写在对应的位置上。ACBFED能否记作∆ABC≌∆DEF?应该记作∆ABC≌∆DFE原因:A与D、B与F、C与E对应。ABCDEF如图:∵△ABC≌△DEF3.全等三角形的性质:全等三角形的对应边相等,对应角相等∴AB=DE,AC=DF,BC=EF∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等)(全等三角形的对应角相等)全等三角形的概念及其性质全等三角形的定义:能够完全重合的两个三角形叫做全等三角形,重合的点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等注意:“全等”的记法“≌”,全等变换:平移、旋转、翻转。(1)将△ABC沿直线BC平移,得到△DEF,说出图中线段、角的关系并说明理由。ABCDEOAFEDCB(2)△ABD≌△ACE,若∠B=25°,BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?3、全等三角形性质的运用三角形全等的判定知识点三角形全等的证题思路:SSSHLSAS找另一边找直角找夹角已知两边AASASASASAAS找边的对角找夹角的另一角找夹角的另一边边为角的邻边找任一角边为角的对边已知一边一角AASASA找任一边找夹边已知两角归纳:两个三角形全等,通常需要3个条件,其中至少要有1组对应相等。边有公共边的,公共边是对应边.有公共角的,公共角是对应角.有对顶角的,对顶角是对应角.一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角.在找全等三角形的对应元素时一般有什么规律?3、如图△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长解:∵△ABD≌△EBC∴AB=EB、BD=BC∵BD=DE+EB∴DE=BD-EB=BC-AB=5-3=2cm练习1:如图,AB=AD,CB=CD.求证:AC平分∠BADADCB证明:在△ABC和△ADC中AC=ACAB=ADCB=CD∴△ABC≌△ADC(SSS)∴∠BAC=∠DAC∴AC平分∠BAD2、如图,D在AB上,E在AC上,AB=AC,∠B=∠C,试问AD=AE吗?为什么?EDCBA解:AD=AE理由:在△ACD和△ABE中∠B=∠CAB=AC∠A=∠A∴△ACD≌△ABE(ASA)∴AD=AE3、如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OCAO平分∠BAC吗?为什么?OCBA答:AO平分∠BAC理由:∵OB⊥AB,OC⊥AC∴∠B=∠C=90°在Rt△ABO和Rt△ACO中OB=OCAO=AO∴Rt△ABO≌Rt△ACO(HL)∴∠BAO=∠CAO∴AO平分∠BAC4、如图,AC和BD相交于点O,OA=OC,OB=OD求证:DC∥AB证明:在△ABO和△CDO中OA=OC∠AOB=∠CODOB=OD∴△ABO≌△CDO(SAS)∴∠A=∠C∴DC∥ABAODBC练习5:如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?BAFEDCBA6、如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补充的条件可以是或或或AB=EDAC=EFBC=DFDC=BF7:已知AC=DB,∠1=∠2.求证:∠A=∠D21DCBA证明:在△ABC和△DCB中AC=DB∠1=∠2BC=CB∴△ABC≌△DCB(SAS)∴∠A=∠D8、如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA△ABF≌△DEC△CBF≌△FEC△ABC≌△DEF答:9、如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中AB=AB∠1=∠2BC=BD∴△ABC≌△ABD(SAS)∴AC=AD10、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=ADEDCAB变式:以上条件不变,将△ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?证明:∵△ABC和△ECD都是等边三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。例题精析:连接例题例2如图2,AE=CF,AD∥BC,AD=CB,求证:⊿ADF≌⊿CBE分析:已知△ABC≌△A1B1C1,相当于已知它们的对应边相等.在证明过程中,可根据需要,选取其中一部分相等关系.例3已知:如图3,△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.求证:AD=A1D1图3例4:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出已知求证后,再写出证明过程。说明:文字证明题的书写格式要标准。例5、如图6,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED提示:找两个全等三角形,需连结BE.图6例6、如图:AB=AC,BD=CD,若∠B=28°则∠C=;如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=度;1.如图1:△ABF≌△CDE,∠B=30°,∠BAE=∠DCF=20°.求∠EFC的度数.练习题:2、如图2,已知:AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC、AB于F、E点.则图形中有()对全等三角形.A、2B、3C4D、5C图1图2(800)3、如图3,已知:△ABC中,DF=FE,BD=CE,AF⊥BC于F,则此图中全等三角形共有()A、5对B、4对C、3对D2对4、如图4,已知:在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F,求证:BF是△ABC中边上的高.提示:关键证明△ADC≌△BFCB5、如图5,已知:AB=CD,AD=CB,O为AC任一点,过O作直线分别交AB、CD的延长线于F、E,求证:∠E=∠F.提示:由条件易证△ABC≌△CDA从而得知∠BAC=∠DCA,即:AB∥CD.知识梳理:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪些性质?3:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。SSS、SAS、ASA、AAS、HL(RT△)总结提高学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”
本文标题:第一章全等三角形复习课课件
链接地址:https://www.777doc.com/doc-6992916 .html