您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2012年山东省高考文科数学真题及答案
第1页(共22页)2012年山东省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5iB.3﹣5iC.﹣3+5iD.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}3.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()第2页(共22页)A.5B.4C.3D.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0C.﹣1D.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=yC.x2=8yD.x2=16y12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是第3页(共22页)()A.x1+x2>0,y1+y2>0B.x1+x2>0,y1+y2<0C.x1+x2<0,y1+y2>0D.x1+x2<0,y1+y2<0二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A﹣DED1的体积为.14.(4分)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.15.(4分)若函数f(x)=ax(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数在[0,+∞)上是增函数,则a=.16.(4分)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为.第4页(共22页)三、解答题:本大题共6小题,共74分.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)若a=1,c=2,求△ABC的面积S.18.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(12分)如图,几何体E﹣ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.20.(12分)已知等差数列{an}的前5项和为105,且a10=2a5.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm.求数列{bm}的前m项和Sm.第5页(共22页)21.(13分)如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.22.(13分)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.第6页(共22页)2012年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•山东)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5iB.3﹣5iC.﹣3+5iD.﹣3﹣5i【分析】等式两边同乘2+i,然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.2.(5分)(2012•山东)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UA)∪B为()A.{1,2,4}B.{2,3,4}C.{0,2,3,4}D.{0,2,4}【分析】由题意,集合∁UA={0,4},从而求得(∁UA)∪B={0,2,4}.【解答】解:∵∁UA={0,4},∴(∁UA)∪B={0,2,4};故选D.3.(5分)(2012•山东)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.第7页(共22页)【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.4.(5分)(2012•山东)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数B.平均数C.中位数D.标准差【分析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案.【解答】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.5.(5分)(2012•山东)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【分析】由题设条件可先判断出两个命题的真假,再根据复合命题真假的判断规则判断出选项中复合命题的真假即可得出正确选项.第8页(共22页)【解答】解:由于函数y=sin2x的最小正周期为π,故命题p是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题.结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题.故选C.6.(5分)(2012•山东)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),zmax=6第9页(共22页)∴故选A7.(5分)(2012•山东)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5B.4C.3D.2【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.(5分)(2012•山东)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为()A.2﹣B.0C.﹣1D.﹣1﹣【分析】通过x的范围,求出的范围,然后求出函数的最值.【解答】解:因为函数,第10页(共22页)所以∈,所以,所以函数的最大值与最小值之和为.故选A.9.(5分)(2012•山东)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.10.(5分)(2012•山东)函数y=的图象大致为()A.B.C.D.【分析】由于函数y=为奇函数,其图象关于原点对称,可排除A,利第11页(共22页)用极限思想(如x→0+,y→+∞)可排除B,C,从而得到答案D.【解答】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.11.(5分)(2012•山东)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是()A.B.x2=yC.x2=8yD.x2=16y【分析】利用双曲线的离心率推出a,b的关系,求出抛物线的焦点坐标,通过点到直线的距离求出p,即可得到抛物线的方程.【解答】解:双曲线C1:的离心率为2.所以,即:=4,所以;双曲线的渐近线方程为:抛物线的焦点(0,)到双曲线C1的渐近线的距离为2,所以2=,因为,所以p=8.抛物线C2的方程为x2=16y.第12页(共22页)故选D.12.(5分)(2012•山东)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.x1+x2>0,y1+y2>0B.x1+x2>0,
本文标题:2012年山东省高考文科数学真题及答案
链接地址:https://www.777doc.com/doc-6993429 .html